On asymptotic behavior of the modified Arratia flow

Konarovskyi V (2017)
Electronic Journal of Probability 22: 1-31.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
We study asymptotic properties of the system of interacting diffusion particles on the real line which transfer a mass [20]. The system is a natural generalization of the coalescing Brownian motions [3, 25]. The main difference is that diffusion particles coalesce summing their mass and changing their diffusion rate inversely proportional to the mass. First we construct the system in the case where the initial mass distribution has the moment of the order greater then two as an L-2-valued martingale with a suitable quadratic variation. Then we find the relationship between the asymptotic behavior of the particles and local properties of the mass distribution at the initial time.
Erscheinungsjahr
2017
Zeitschriftentitel
Electronic Journal of Probability
Band
22
Seite(n)
1-31
eISSN
1083-6489
Page URI
https://pub.uni-bielefeld.de/record/2957874

Zitieren

Konarovskyi V. On asymptotic behavior of the modified Arratia flow. Electronic Journal of Probability. 2017;22:1-31.
Konarovskyi, V. (2017). On asymptotic behavior of the modified Arratia flow. Electronic Journal of Probability, 22, 1-31. https://doi.org/10.1214/17-EJP34
Konarovskyi, V. (2017). On asymptotic behavior of the modified Arratia flow. Electronic Journal of Probability 22, 1-31.
Konarovskyi, V., 2017. On asymptotic behavior of the modified Arratia flow. Electronic Journal of Probability, 22, p 1-31.
V. Konarovskyi, “On asymptotic behavior of the modified Arratia flow”, Electronic Journal of Probability, vol. 22, 2017, pp. 1-31.
Konarovskyi, V.: On asymptotic behavior of the modified Arratia flow. Electronic Journal of Probability. 22, 1-31 (2017).
Konarovskyi, Vitalii. “On asymptotic behavior of the modified Arratia flow”. Electronic Journal of Probability 22 (2017): 1-31.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Suchen in

Google Scholar