Gromov hyperbolic graphs arising from iterations

Kong S, Lau K-S, Wang X-Y (2021)
Advances in Mathematics 389: 107908.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Kong, ShileiUniBi; Lau, Ka-Sing; Wang, Xiang-Yang
Abstract / Bemerkung
For a contractive iterated function system (IFS), it is known that there is a natural hyperbolic graph structure (augmented tree) on the symbolic space of the IFS that reflects the relationship among neighboring cells, and its hyperbolic boundary with the Gromov metric is Holder equivalent to the attractor K [14,26,28]. This setup was taken up to study the probabilistic potential theory on K [21,20], and the biLipschitz equivalence on K [29]. In this paper, we formulate a broad class of hyperbolic graphs, called expansive hyperbolic graphs, to capture the most essential properties from the augmented trees and the hyperbolic boundaries (e.g., the special geodesics, bounded degree property, metric doubling property, and Holder equivalence). We also study a new setup of "weighted" IFS and investigate its connection with the self-similar energy form in the analysis of fractals. (C) 2021 Elsevier Inc. All rights reserved.
Stichworte
Hyperbolic graph; Hyperbolic boundary; Compact metric space; Doubling; Self-similar set
Erscheinungsjahr
2021
Zeitschriftentitel
Advances in Mathematics
Band
389
Art.-Nr.
107908
ISSN
0001-8708
eISSN
1090-2082
Page URI
https://pub.uni-bielefeld.de/record/2957354

Zitieren

Kong S, Lau K-S, Wang X-Y. Gromov hyperbolic graphs arising from iterations. Advances in Mathematics. 2021;389: 107908.
Kong, S., Lau, K. - S., & Wang, X. - Y. (2021). Gromov hyperbolic graphs arising from iterations. Advances in Mathematics, 389, 107908. https://doi.org/10.1016/j.aim.2021.107908
Kong, S., Lau, K. - S., and Wang, X. - Y. (2021). Gromov hyperbolic graphs arising from iterations. Advances in Mathematics 389:107908.
Kong, S., Lau, K.-S., & Wang, X.-Y., 2021. Gromov hyperbolic graphs arising from iterations. Advances in Mathematics, 389: 107908.
S. Kong, K.-S. Lau, and X.-Y. Wang, “Gromov hyperbolic graphs arising from iterations”, Advances in Mathematics, vol. 389, 2021, : 107908.
Kong, S., Lau, K.-S., Wang, X.-Y.: Gromov hyperbolic graphs arising from iterations. Advances in Mathematics. 389, : 107908 (2021).
Kong, Shilei, Lau, Ka-Sing, and Wang, Xiang-Yang. “Gromov hyperbolic graphs arising from iterations”. Advances in Mathematics 389 (2021): 107908.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Suchen in

Google Scholar