A computational reproducibility study of PLOS ONE articles featuring longitudinal data analyses

Seibold H, Czerny S, Decke S, Dieterle R, Eder T, Fohr S, Hahn N, Hartmann R, Heindl C, Kopper P, Lepke D, et al. (2021)
PLoS ONE 16(6): e0251194.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Seibold, HeidiUniBi; Czerny, Severin; Decke, Siona; Dieterle, Roman; Eder, Thomas; Fohr, Steffen; Hahn, Nico; Hartmann, Rabea; Heindl, Christoph; Kopper, Philipp; Lepke, Dario; Loidl, Verena
Alle
Abstract / Bemerkung
Computational reproducibility is a corner stone for sound and credible research. Especially in complex statistical analyses-such as the analysis of longitudinal data-reproducing results is far from simple, especially if no source code is available. In this work we aimed to reproduce analyses of longitudinal data of 11 articles published in PLOS ONE. Inclusion criteria were the availability of data and author consent. We investigated the types of methods and software used and whether we were able to reproduce the data analysis using open source software. Most articles provided overview tables and simple visualisations. Generalised Estimating Equations (GEEs) were the most popular statistical models among the selected articles. Only one article used open source software and only one published part of the analysis code. Replication was difficult in most cases and required reverse engineering of results or contacting the authors. For three articles we were not able to reproduce the results, for another two only parts of them. For all but two articles we had to contact the authors to be able to reproduce the results. Our main learning is that reproducing papers is difficult if no code is supplied and leads to a high burden for those conducting the reproductions. Open data policies in journals are good, but to truly boost reproducibility we suggest adding open code policies.
Erscheinungsjahr
2021
Zeitschriftentitel
PLoS ONE
Band
16
Ausgabe
6
Art.-Nr.
e0251194
eISSN
1932-6203
Page URI
https://pub.uni-bielefeld.de/record/2957050

Zitieren

Seibold H, Czerny S, Decke S, et al. A computational reproducibility study of PLOS ONE articles featuring longitudinal data analyses. PLoS ONE . 2021;16(6): e0251194.
Seibold, H., Czerny, S., Decke, S., Dieterle, R., Eder, T., Fohr, S., Hahn, N., et al. (2021). A computational reproducibility study of PLOS ONE articles featuring longitudinal data analyses. PLoS ONE , 16(6), e0251194. https://doi.org/10.1371/journal.pone.0251194
Seibold, H., Czerny, S., Decke, S., Dieterle, R., Eder, T., Fohr, S., Hahn, N., Hartmann, R., Heindl, C., Kopper, P., et al. (2021). A computational reproducibility study of PLOS ONE articles featuring longitudinal data analyses. PLoS ONE 16:e0251194.
Seibold, H., et al., 2021. A computational reproducibility study of PLOS ONE articles featuring longitudinal data analyses. PLoS ONE , 16(6): e0251194.
H. Seibold, et al., “A computational reproducibility study of PLOS ONE articles featuring longitudinal data analyses”, PLoS ONE , vol. 16, 2021, : e0251194.
Seibold, H., Czerny, S., Decke, S., Dieterle, R., Eder, T., Fohr, S., Hahn, N., Hartmann, R., Heindl, C., Kopper, P., Lepke, D., Loidl, V., Mandl, M., Musiol, S., Peter, J., Piehler, A., Rojas, E., Schmid, S., Schmidt, H., Schmoll, M., Schneider, L., To, X.-Y., Tran, V., Voelker, A., Wagner, M., Wagner, J., Waize, M., Wecker, H., Yang, R., Zellner, S., Nalenz, M.: A computational reproducibility study of PLOS ONE articles featuring longitudinal data analyses. PLoS ONE . 16, : e0251194 (2021).
Seibold, Heidi, Czerny, Severin, Decke, Siona, Dieterle, Roman, Eder, Thomas, Fohr, Steffen, Hahn, Nico, Hartmann, Rabea, Heindl, Christoph, Kopper, Philipp, Lepke, Dario, Loidl, Verena, Mandl, Maximilian, Musiol, Sarah, Peter, Jessica, Piehler, Alexander, Rojas, Elio, Schmid, Stefanie, Schmidt, Hannah, Schmoll, Melissa, Schneider, Lennart, To, Xiao-Yin, Tran, Viet, Voelker, Antje, Wagner, Moritz, Wagner, Joshua, Waize, Maria, Wecker, Hannah, Yang, Rui, Zellner, Simone, and Nalenz, Malte. “A computational reproducibility study of PLOS ONE articles featuring longitudinal data analyses”. PLoS ONE 16.6 (2021): e0251194.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 34153038
PubMed | Europe PMC

Suchen in

Google Scholar