Intrinsic scaling properties for nonlocal operators II
Kaßmann M, Mimica A (2014)
arXiv:1412.7566.
Preprint | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Kaßmann, MoritzUniBi ;
Mimica, Ante
Abstract / Bemerkung
We study integrodifferential operators and regularity estimates for solutions
to integrodifferential equations. Our emphasis is on kernels with a critically
low singularity which does not allow for standard scaling. For example, we
treat operators that have a logarithmic order of differentiability. For
corresponding equations we prove a growth lemma and derive a priori estimates.
We derive these estimates by classical methods developed for partial
differential operators. Since the integrodifferential operators under
consideration generate Markov jump processes, we are able to offer an
alternative approach using probabilistic techniques.
Erscheinungsjahr
2014
Zeitschriftentitel
arXiv:1412.7566
Page URI
https://pub.uni-bielefeld.de/record/2956123
Zitieren
Kaßmann M, Mimica A. Intrinsic scaling properties for nonlocal operators II. arXiv:1412.7566. 2014.
Kaßmann, M., & Mimica, A. (2014). Intrinsic scaling properties for nonlocal operators II. arXiv:1412.7566
Kaßmann, Moritz, and Mimica, Ante. 2014. “Intrinsic scaling properties for nonlocal operators II”. arXiv:1412.7566.
Kaßmann, M., and Mimica, A. (2014). Intrinsic scaling properties for nonlocal operators II. arXiv:1412.7566.
Kaßmann, M., & Mimica, A., 2014. Intrinsic scaling properties for nonlocal operators II. arXiv:1412.7566.
M. Kaßmann and A. Mimica, “Intrinsic scaling properties for nonlocal operators II”, arXiv:1412.7566, 2014.
Kaßmann, M., Mimica, A.: Intrinsic scaling properties for nonlocal operators II. arXiv:1412.7566. (2014).
Kaßmann, Moritz, and Mimica, Ante. “Intrinsic scaling properties for nonlocal operators II”. arXiv:1412.7566 (2014).