Robust Hölder Estimates for Parabolic Nonlocal Operators
Chaker J, Kaßmann M, Weidner M (2019)
arXiv:1912.09919.
Preprint | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
In this work we study parabolic equations determined by nonlocal operators in
a general framework of bounded and measurable coefficients. Our emphasis is on
the weak Harnack inequality and H\"older regularity estimates for solutions of
such equations. We allow the underlying jump measures to be singular with a
singularity that depends on the coordinate direction. This approach also allows
to study several classes of non-singular jump measures that have not been dealt
with so far. The main estimates are robust in the sense that the constants can
be chosen independently of the order of differentiability of the operators.
Erscheinungsjahr
2019
Zeitschriftentitel
arXiv:1912.09919
Page URI
https://pub.uni-bielefeld.de/record/2956081
Zitieren
Chaker J, Kaßmann M, Weidner M. Robust Hölder Estimates for Parabolic Nonlocal Operators. arXiv:1912.09919. 2019.
Chaker, J., Kaßmann, M., & Weidner, M. (2019). Robust Hölder Estimates for Parabolic Nonlocal Operators. arXiv:1912.09919
Chaker, Jamil, Kaßmann, Moritz, and Weidner, Marvin. 2019. “Robust Hölder Estimates for Parabolic Nonlocal Operators”. arXiv:1912.09919.
Chaker, J., Kaßmann, M., and Weidner, M. (2019). Robust Hölder Estimates for Parabolic Nonlocal Operators. arXiv:1912.09919.
Chaker, J., Kaßmann, M., & Weidner, M., 2019. Robust Hölder Estimates for Parabolic Nonlocal Operators. arXiv:1912.09919.
J. Chaker, M. Kaßmann, and M. Weidner, “Robust Hölder Estimates for Parabolic Nonlocal Operators”, arXiv:1912.09919, 2019.
Chaker, J., Kaßmann, M., Weidner, M.: Robust Hölder Estimates for Parabolic Nonlocal Operators. arXiv:1912.09919. (2019).
Chaker, Jamil, Kaßmann, Moritz, and Weidner, Marvin. “Robust Hölder Estimates for Parabolic Nonlocal Operators”. arXiv:1912.09919 (2019).