Heat kernel bounds for nonlocal operators with singular kernels

Kaßmann M, Kim K-Y, Kumagai T (2019)
arXiv:1910.04242.

Preprint | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Kaßmann, MoritzUniBi ; Kim, Kyung-Youn; Kumagai, Takashi
Abstract / Bemerkung
We prove sharp two-sided bounds of the fundamental solution for an integro-differential operator of order $\alpha \in (0,2)$ that generates a $d$-dimensional Markov process. The corresponding Dirichlet form is comparable to that of $d$ independent copies of one-dimensional jump processes, i.e., the jumping measure is singular with respect to the $d$-dimensional Lebesgue measure.
Erscheinungsjahr
2019
Zeitschriftentitel
arXiv:1910.04242
Page URI
https://pub.uni-bielefeld.de/record/2956080

Zitieren

Kaßmann M, Kim K-Y, Kumagai T. Heat kernel bounds for nonlocal operators with singular kernels. arXiv:1910.04242. 2019.
Kaßmann, M., Kim, K. - Y., & Kumagai, T. (2019). Heat kernel bounds for nonlocal operators with singular kernels. arXiv:1910.04242
Kaßmann, M., Kim, K. - Y., and Kumagai, T. (2019). Heat kernel bounds for nonlocal operators with singular kernels. arXiv:1910.04242.
Kaßmann, M., Kim, K.-Y., & Kumagai, T., 2019. Heat kernel bounds for nonlocal operators with singular kernels. arXiv:1910.04242.
M. Kaßmann, K.-Y. Kim, and T. Kumagai, “Heat kernel bounds for nonlocal operators with singular kernels”, arXiv:1910.04242, 2019.
Kaßmann, M., Kim, K.-Y., Kumagai, T.: Heat kernel bounds for nonlocal operators with singular kernels. arXiv:1910.04242. (2019).
Kaßmann, Moritz, Kim, Kyung-Youn, and Kumagai, Takashi. “Heat kernel bounds for nonlocal operators with singular kernels”. arXiv:1910.04242 (2019).

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Quellen

arXiv: 1910.04242

Suchen in

Google Scholar