Heat kernel estimates for Markov processes of direction-dependent type

Kang J, Kaßmann M (2021)
arXiv:2106.07282.

Preprint | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Kang, Jaehoon; Kaßmann, MoritzUniBi
Abstract / Bemerkung
We prove sharp pointwise heat kernel estimates for symmetric Markov processes that are generated by symmetric Dirichlet forms that are local with respect to some coordinates and nonlocal with respect to the remaining coordinates. The main theorem is a robustness result like the famous estimate for the fundamental solution of second order differential operators, obtained by Donald G. Aronson. Analogous to his result, we show that the corresponding translation-invariant process and the one given by the general Dirichlet form share the same pointwise points.
Erscheinungsjahr
2021
Zeitschriftentitel
arXiv:2106.07282
Page URI
https://pub.uni-bielefeld.de/record/2956079

Zitieren

Kang J, Kaßmann M. Heat kernel estimates for Markov processes of direction-dependent type. arXiv:2106.07282. 2021.
Kang, J., & Kaßmann, M. (2021). Heat kernel estimates for Markov processes of direction-dependent type. arXiv:2106.07282
Kang, J., and Kaßmann, M. (2021). Heat kernel estimates for Markov processes of direction-dependent type. arXiv:2106.07282.
Kang, J., & Kaßmann, M., 2021. Heat kernel estimates for Markov processes of direction-dependent type. arXiv:2106.07282.
J. Kang and M. Kaßmann, “Heat kernel estimates for Markov processes of direction-dependent type”, arXiv:2106.07282, 2021.
Kang, J., Kaßmann, M.: Heat kernel estimates for Markov processes of direction-dependent type. arXiv:2106.07282. (2021).
Kang, Jaehoon, and Kaßmann, Moritz. “Heat kernel estimates for Markov processes of direction-dependent type”. arXiv:2106.07282 (2021).

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Quellen

arXiv: 2106.07282

Suchen in

Google Scholar