Heat kernel estimates for Markov processes of direction-dependent type
Kang J, Kaßmann M (2021)
arXiv:2106.07282.
Preprint | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Kang, Jaehoon;
Kaßmann, MoritzUniBi
Einrichtung
Abstract / Bemerkung
We prove sharp pointwise heat kernel estimates for symmetric Markov processes
that are generated by symmetric Dirichlet forms that are local with respect to
some coordinates and nonlocal with respect to the remaining coordinates. The
main theorem is a robustness result like the famous estimate for the
fundamental solution of second order differential operators, obtained by Donald
G. Aronson. Analogous to his result, we show that the corresponding
translation-invariant process and the one given by the general Dirichlet form
share the same pointwise points.
Erscheinungsjahr
2021
Zeitschriftentitel
arXiv:2106.07282
Page URI
https://pub.uni-bielefeld.de/record/2956079
Zitieren
Kang J, Kaßmann M. Heat kernel estimates for Markov processes of direction-dependent type. arXiv:2106.07282. 2021.
Kang, J., & Kaßmann, M. (2021). Heat kernel estimates for Markov processes of direction-dependent type. arXiv:2106.07282
Kang, Jaehoon, and Kaßmann, Moritz. 2021. “Heat kernel estimates for Markov processes of direction-dependent type”. arXiv:2106.07282.
Kang, J., and Kaßmann, M. (2021). Heat kernel estimates for Markov processes of direction-dependent type. arXiv:2106.07282.
Kang, J., & Kaßmann, M., 2021. Heat kernel estimates for Markov processes of direction-dependent type. arXiv:2106.07282.
J. Kang and M. Kaßmann, “Heat kernel estimates for Markov processes of direction-dependent type”, arXiv:2106.07282, 2021.
Kang, J., Kaßmann, M.: Heat kernel estimates for Markov processes of direction-dependent type. arXiv:2106.07282. (2021).
Kang, Jaehoon, and Kaßmann, Moritz. “Heat kernel estimates for Markov processes of direction-dependent type”. arXiv:2106.07282 (2021).