Imitation and recognition of facial emotions in autism: a computer vision approach.

Drimalla H, Baskow I, Behnia B, Roepke S, Dziobek I (2021)
Molecular autism 12(1): 27.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 1.50 MB
Autor*in
Drimalla, HannaUniBi; Baskow, Irina; Behnia, Behnoush; Roepke, Stefan; Dziobek, Isabel
Abstract / Bemerkung
BACKGROUND: Imitation of facial expressions plays an important role in social functioning. However, little is known about the quality of facial imitation in individuals with autism and its relationship with defining difficulties in emotion recognition.; METHODS: We investigated imitation and recognition of facial expressions in 37 individuals with autism spectrum conditions and 43 neurotypical controls. Using a novel computer-based face analysis, we measured instructed imitation of facial emotional expressions and related it to emotion recognition abilities.; RESULTS: Individuals with autism imitated facial expressions if instructed to do so, but their imitation was both slower and less precise than that of neurotypical individuals. In both groups, a more precise imitation scaled positively with participants' accuracy of emotion recognition.; LIMITATIONS: Given the study's focus on adults with autism without intellectual impairment, it is unclear whether the results generalize to children with autism or individuals with intellectual disability. Further, the new automated facial analysis, despite being less intrusive than electromyography, might be less sensitive.; CONCLUSIONS: Group differences in emotion recognition, imitation and their interrelationships highlight potential for treatment of social interaction problems in individuals with autism.
Stichworte
Autism; Imitation; Facial expression; Emotion recognition; Automated analysis
Erscheinungsjahr
2021
Zeitschriftentitel
Molecular autism
Band
12
Ausgabe
1
Art.-Nr.
27
eISSN
2040-2392
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Universität Bielefeld im Rahmen des DEAL-Vertrags gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2954081

Zitieren

Drimalla H, Baskow I, Behnia B, Roepke S, Dziobek I. Imitation and recognition of facial emotions in autism: a computer vision approach. Molecular autism. 2021;12(1): 27.
Drimalla, H., Baskow, I., Behnia, B., Roepke, S., & Dziobek, I. (2021). Imitation and recognition of facial emotions in autism: a computer vision approach. Molecular autism, 12(1), 27. https://doi.org/10.1186/s13229-021-00430-0
Drimalla, Hanna, Baskow, Irina, Behnia, Behnoush, Roepke, Stefan, and Dziobek, Isabel. 2021. “Imitation and recognition of facial emotions in autism: a computer vision approach.”. Molecular autism 12 (1): 27.
Drimalla, H., Baskow, I., Behnia, B., Roepke, S., and Dziobek, I. (2021). Imitation and recognition of facial emotions in autism: a computer vision approach. Molecular autism 12:27.
Drimalla, H., et al., 2021. Imitation and recognition of facial emotions in autism: a computer vision approach. Molecular autism, 12(1): 27.
H. Drimalla, et al., “Imitation and recognition of facial emotions in autism: a computer vision approach.”, Molecular autism, vol. 12, 2021, : 27.
Drimalla, H., Baskow, I., Behnia, B., Roepke, S., Dziobek, I.: Imitation and recognition of facial emotions in autism: a computer vision approach. Molecular autism. 12, : 27 (2021).
Drimalla, Hanna, Baskow, Irina, Behnia, Behnoush, Roepke, Stefan, and Dziobek, Isabel. “Imitation and recognition of facial emotions in autism: a computer vision approach.”. Molecular autism 12.1 (2021): 27.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2022-01-18T12:44:01Z
MD5 Prüfsumme
dc9500ad82ac9f29d5c733e654cbf120

Link(s) zu Volltext(en)
Access Level
OA Open Access
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 33823922
PubMed | Europe PMC

Suchen in

Google Scholar