Well-posedness for a system of quadratic derivative nonlinear Schrodinger equations in almost critical spaces
Hirayama H, Kinoshita S, Okamoto M (2021)
Journal of Mathematical Analysis and Applications 499(2): 125028.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Hirayama, Hiroyuki;
Kinoshita, ShinyaUniBi;
Okamoto, Mamoru
Einrichtung
Abstract / Bemerkung
In this paper, we consider the Cauchy problem of the system of quadratic derivative nonlinear Schrodinger equations introduced by Colin and Colin (2004). We determine an almost optimal Sobolev regularity where the smooth flow map of the Cauchy problem exists, except for the scaling critical case. This result covers a gap left open in papers of the first and second authors (2014, 2019). (C) 2021 Elsevier Inc. All rights reserved.
Stichworte
Schrodinger equation;
Well-posedness;
Cauchy problem;
Bilinear estimate
Erscheinungsjahr
2021
Zeitschriftentitel
Journal of Mathematical Analysis and Applications
Band
499
Ausgabe
2
Art.-Nr.
125028
ISSN
0022-247X
eISSN
1096-0813
Page URI
https://pub.uni-bielefeld.de/record/2953813
Zitieren
Hirayama H, Kinoshita S, Okamoto M. Well-posedness for a system of quadratic derivative nonlinear Schrodinger equations in almost critical spaces. Journal of Mathematical Analysis and Applications. 2021;499(2): 125028.
Hirayama, H., Kinoshita, S., & Okamoto, M. (2021). Well-posedness for a system of quadratic derivative nonlinear Schrodinger equations in almost critical spaces. Journal of Mathematical Analysis and Applications, 499(2), 125028. https://doi.org/10.1016/j.jmaa.2021.125028
Hirayama, Hiroyuki, Kinoshita, Shinya, and Okamoto, Mamoru. 2021. “Well-posedness for a system of quadratic derivative nonlinear Schrodinger equations in almost critical spaces”. Journal of Mathematical Analysis and Applications 499 (2): 125028.
Hirayama, H., Kinoshita, S., and Okamoto, M. (2021). Well-posedness for a system of quadratic derivative nonlinear Schrodinger equations in almost critical spaces. Journal of Mathematical Analysis and Applications 499:125028.
Hirayama, H., Kinoshita, S., & Okamoto, M., 2021. Well-posedness for a system of quadratic derivative nonlinear Schrodinger equations in almost critical spaces. Journal of Mathematical Analysis and Applications, 499(2): 125028.
H. Hirayama, S. Kinoshita, and M. Okamoto, “Well-posedness for a system of quadratic derivative nonlinear Schrodinger equations in almost critical spaces”, Journal of Mathematical Analysis and Applications, vol. 499, 2021, : 125028.
Hirayama, H., Kinoshita, S., Okamoto, M.: Well-posedness for a system of quadratic derivative nonlinear Schrodinger equations in almost critical spaces. Journal of Mathematical Analysis and Applications. 499, : 125028 (2021).
Hirayama, Hiroyuki, Kinoshita, Shinya, and Okamoto, Mamoru. “Well-posedness for a system of quadratic derivative nonlinear Schrodinger equations in almost critical spaces”. Journal of Mathematical Analysis and Applications 499.2 (2021): 125028.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in