Multidimensional Singular Control and Related Skorokhod Problem: Suficient Conditions for the Characterization of Optimal Controls
Dianetti J, Ferrari G (2021) Center for Mathematical Economics Working Papers; 645.
Bielefeld: Center for Mathematical Economics.
Diskussionspapier
| Veröffentlicht | Englisch
Download
IMW_working_paper_645.pdf
624.44 KB
Autor*in
Abstract / Bemerkung
We characterize the optimal control for a class of singular stochastic control
problems as the unique solution to a related Skorokhod reflection problem. The considered
optimization problems concern the minimization of a discounted cost functional over an infinite time-horizon through a process of bounded variation affecting an Itô-diffusion. The
setting is multidimensional, the dynamics of the state and the costs are convex, the volatility
matrix can be constant or linear in the state. We prove that the optimal control acts only
when the underlying diffusion attempts to exit the so-called waiting region, and that the
direction of this action is prescribed by the derivative of the value function. Our approach is
based on the study of a suitable monotonicity property of the derivative of the value function
through its interpretation as the value of an optimal stopping game. Such a monotonicity allows to construct nearly optimal policies which reflect the underlying diffusion at the
boundary of approximating waiting regions. The limit of this approximation scheme then
provides the desired characterization. Our result applies to a relevant class of linear-quadratic
models, among others. Furthermore, it allows to construct the optimal control in degenerate
and non degenerate settings considered in the literature, where this important aspect was
only partially addressed.
AMS subject classification: 93E20, 60G17, 91A55, 49J40
AMS subject classification: 93E20, 60G17, 91A55, 49J40
Stichworte
Dynkin games;
re ected diffusion;
singular stochastic control;
Skorokhod problem;
variational inequalities
Erscheinungsjahr
2021
Serientitel
Center for Mathematical Economics Working Papers
Band
645
Seite(n)
38
Urheberrecht / Lizenzen
ISSN
0931-6558
Page URI
https://pub.uni-bielefeld.de/record/2952857
Zitieren
Dianetti J, Ferrari G. Multidimensional Singular Control and Related Skorokhod Problem: Suficient Conditions for the Characterization of Optimal Controls. Center for Mathematical Economics Working Papers. Vol 645. Bielefeld: Center for Mathematical Economics; 2021.
Dianetti, J., & Ferrari, G. (2021). Multidimensional Singular Control and Related Skorokhod Problem: Suficient Conditions for the Characterization of Optimal Controls (Center for Mathematical Economics Working Papers, 645). Bielefeld: Center for Mathematical Economics.
Dianetti, Jodi, and Ferrari, Giorgio. 2021. Multidimensional Singular Control and Related Skorokhod Problem: Suficient Conditions for the Characterization of Optimal Controls. Vol. 645. Center for Mathematical Economics Working Papers. Bielefeld: Center for Mathematical Economics.
Dianetti, J., and Ferrari, G. (2021). Multidimensional Singular Control and Related Skorokhod Problem: Suficient Conditions for the Characterization of Optimal Controls. Center for Mathematical Economics Working Papers, 645, Bielefeld: Center for Mathematical Economics.
Dianetti, J., & Ferrari, G., 2021. Multidimensional Singular Control and Related Skorokhod Problem: Suficient Conditions for the Characterization of Optimal Controls, Center for Mathematical Economics Working Papers, no.645, Bielefeld: Center for Mathematical Economics.
J. Dianetti and G. Ferrari, Multidimensional Singular Control and Related Skorokhod Problem: Suficient Conditions for the Characterization of Optimal Controls, Center for Mathematical Economics Working Papers, vol. 645, Bielefeld: Center for Mathematical Economics, 2021.
Dianetti, J., Ferrari, G.: Multidimensional Singular Control and Related Skorokhod Problem: Suficient Conditions for the Characterization of Optimal Controls. Center for Mathematical Economics Working Papers, 645. Center for Mathematical Economics, Bielefeld (2021).
Dianetti, Jodi, and Ferrari, Giorgio. Multidimensional Singular Control and Related Skorokhod Problem: Suficient Conditions for the Characterization of Optimal Controls. Bielefeld: Center for Mathematical Economics, 2021. Center for Mathematical Economics Working Papers. 645.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Name
IMW_working_paper_645.pdf
624.44 KB
Access Level
Open Access
Zuletzt Hochgeladen
2021-03-18T08:30:22Z
MD5 Prüfsumme
5ead332edc9798c371fdc1bb3beea661