Accurate quantum dynamics simulation of the photodetachment spectrum of the nitrate anion (NO3-) based on an artificial neural network diabatic potential model

Viel A, Williams D, Eisfeld W (2021)
The Journal of chemical physics 154(8): 084302.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Abstract / Bemerkung
The photodetachment spectrum of the nitrate anion (NO3 -) is simulated from first principles using wavepacket quantum dynamics propagation and a newly developed accurate full-dimensional fully coupled five state diabatic potential model. This model utilizes the recently proposed complete nuclear permutation inversion invariant artificial neural network diabatization technique [D. M. G. Williams and W. Eisfeld, J. Phys. Chem. A 124, 7608 (2020)]. The quantum dynamics simulations are designed such that temperature effects and the impact of near threshold detachment are taken into account. Thus, the two available experiments at high temperature and at cryogenic temperature using the slow electron velocity-map imaging technique can be reproduced in very good agreement. These results clearly show the relevance of hot bands and vibronic coupling between the X2A2 ' ground state and the B2E' excited state of the neutral radical. This together with the recent experiment at low temperature gives further support for the proper assignment of the nu3 fundamental, which has been debated for many years. An assignment of a not yet discussed hot band line is also proposed.
Erscheinungsjahr
2021
Zeitschriftentitel
The Journal of chemical physics
Band
154
Ausgabe
8
Art.-Nr.
084302
eISSN
1089-7690
Page URI
https://pub.uni-bielefeld.de/record/2952464

Zitieren

Viel A, Williams D, Eisfeld W. Accurate quantum dynamics simulation of the photodetachment spectrum of the nitrate anion (NO3-) based on an artificial neural network diabatic potential model. The Journal of chemical physics. 2021;154(8): 084302.
Viel, A., Williams, D., & Eisfeld, W. (2021). Accurate quantum dynamics simulation of the photodetachment spectrum of the nitrate anion (NO3-) based on an artificial neural network diabatic potential model. The Journal of chemical physics, 154(8), 084302. https://doi.org/10.1063/5.0039503
Viel, Alexandra, Williams, David, and Eisfeld, Wolfgang. 2021. “Accurate quantum dynamics simulation of the photodetachment spectrum of the nitrate anion (NO3-) based on an artificial neural network diabatic potential model”. The Journal of chemical physics 154 (8): 084302.
Viel, A., Williams, D., and Eisfeld, W. (2021). Accurate quantum dynamics simulation of the photodetachment spectrum of the nitrate anion (NO3-) based on an artificial neural network diabatic potential model. The Journal of chemical physics 154:084302.
Viel, A., Williams, D., & Eisfeld, W., 2021. Accurate quantum dynamics simulation of the photodetachment spectrum of the nitrate anion (NO3-) based on an artificial neural network diabatic potential model. The Journal of chemical physics, 154(8): 084302.
A. Viel, D. Williams, and W. Eisfeld, “Accurate quantum dynamics simulation of the photodetachment spectrum of the nitrate anion (NO3-) based on an artificial neural network diabatic potential model”, The Journal of chemical physics, vol. 154, 2021, : 084302.
Viel, A., Williams, D., Eisfeld, W.: Accurate quantum dynamics simulation of the photodetachment spectrum of the nitrate anion (NO3-) based on an artificial neural network diabatic potential model. The Journal of chemical physics. 154, : 084302 (2021).
Viel, Alexandra, Williams, David, and Eisfeld, Wolfgang. “Accurate quantum dynamics simulation of the photodetachment spectrum of the nitrate anion (NO3-) based on an artificial neural network diabatic potential model”. The Journal of chemical physics 154.8 (2021): 084302.

Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

References

Daten bereitgestellt von Europe PubMed Central.

Material in PUB:
Teil dieser Dissertation
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 33639724
PubMed | Europe PMC

Suchen in

Google Scholar