Observation of strong magneto plasmonic nonlinearity in bilayer graphene discs

Chin ML, Matschy S, Stawitzki F, Poojali J, Hafez HA, Turchinovich D, Winnerl S, Kumar G, Myers-Ward RL, Dejarld MT, Daniels KM, et al. (2021)
Journal of Physics: Photonics 3(1): 01LT01.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 1.23 MB
Autor*in
Chin, Matthew L.; Matschy, Sebastian; Stawitzki, Florian; Poojali, Jayaprakash; Hafez, Hassan A.; Turchinovich, DmitryUniBi; Winnerl, Stephan; Kumar, Gagan; Myers-Ward, Rachael L.; Dejarld, Matthew T.; Daniels, Kevin M.; Drew, H. Dennis
Alle
Abstract / Bemerkung
Graphene patterned into plasmonic structures like ribbons or discs strongly increases the linear and nonlinear optical interaction at resonance. The nonlinear optical response is governed by hot carriers, leading to a red-shift of the plasmon frequency. In magnetic fields, the plasmon hybridizes with the cyclotron resonance, resulting in a splitting of the plasmonic absorption into two branches. Here we present how this splitting can be exploited to tune the nonlinear optical response of graphene discs. In the absence of a magnetic field, a strong pump-induced increase in on-resonant transmission can be observed, but fields in the range of 3 T can change the characteristics completely, leading to an inverted nonlinearity. A two temperature model is provided that describes the observed behavior well.
Stichworte
graphene plasmonics; THz pump-probe; magneto plasmons; tunable; nonlinearity; THz nonlinearity
Erscheinungsjahr
2021
Zeitschriftentitel
Journal of Physics: Photonics
Band
3
Ausgabe
1
Art.-Nr.
01LT01
eISSN
2515-7647
Page URI
https://pub.uni-bielefeld.de/record/2951306

Zitieren

Chin ML, Matschy S, Stawitzki F, et al. Observation of strong magneto plasmonic nonlinearity in bilayer graphene discs. Journal of Physics: Photonics. 2021;3(1): 01LT01.
Chin, M. L., Matschy, S., Stawitzki, F., Poojali, J., Hafez, H. A., Turchinovich, D., Winnerl, S., et al. (2021). Observation of strong magneto plasmonic nonlinearity in bilayer graphene discs. Journal of Physics: Photonics, 3(1), 01LT01. https://doi.org/10.1088/2515-7647/abd7d0
Chin, Matthew L., Matschy, Sebastian, Stawitzki, Florian, Poojali, Jayaprakash, Hafez, Hassan A., Turchinovich, Dmitry, Winnerl, Stephan, et al. 2021. “Observation of strong magneto plasmonic nonlinearity in bilayer graphene discs”. Journal of Physics: Photonics 3 (1): 01LT01.
Chin, M. L., Matschy, S., Stawitzki, F., Poojali, J., Hafez, H. A., Turchinovich, D., Winnerl, S., Kumar, G., Myers-Ward, R. L., Dejarld, M. T., et al. (2021). Observation of strong magneto plasmonic nonlinearity in bilayer graphene discs. Journal of Physics: Photonics 3:01LT01.
Chin, M.L., et al., 2021. Observation of strong magneto plasmonic nonlinearity in bilayer graphene discs. Journal of Physics: Photonics, 3(1): 01LT01.
M.L. Chin, et al., “Observation of strong magneto plasmonic nonlinearity in bilayer graphene discs”, Journal of Physics: Photonics, vol. 3, 2021, : 01LT01.
Chin, M.L., Matschy, S., Stawitzki, F., Poojali, J., Hafez, H.A., Turchinovich, D., Winnerl, S., Kumar, G., Myers-Ward, R.L., Dejarld, M.T., Daniels, K.M., Drew, H.D., Murphy, T.E., Mittendorff, M.: Observation of strong magneto plasmonic nonlinearity in bilayer graphene discs. Journal of Physics: Photonics. 3, : 01LT01 (2021).
Chin, Matthew L., Matschy, Sebastian, Stawitzki, Florian, Poojali, Jayaprakash, Hafez, Hassan A., Turchinovich, Dmitry, Winnerl, Stephan, Kumar, Gagan, Myers-Ward, Rachael L., Dejarld, Matthew T., Daniels, Kevin M., Drew, H. Dennis, Murphy, Thomas E., and Mittendorff, Martin. “Observation of strong magneto plasmonic nonlinearity in bilayer graphene discs”. Journal of Physics: Photonics 3.1 (2021): 01LT01.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2022-03-07T17:14:05Z
MD5 Prüfsumme
9378773cac20fc5162d80ebe1b0452f6

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar