Zeta functions of integral nilpotent quiver representations

Lee S, Voll C (2020)
arXiv:2006.12346.

Preprint | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
We introduce and study zeta functions enumerating subrepresentations of integral quiver representations. For nilpotent such representations defined over number fields, we exhibit a homogeneity condition that we prove to be sufficient for local functional quations of the generic Euler factors of these zeta functions. This generalizes and unifies previous work on submodule zeta functions including, specifically, ideal zeta functions of nilpotent (Lie) rings and their graded analogues.
Erscheinungsjahr
2020
Zeitschriftentitel
arXiv:2006.12346
Page URI
https://pub.uni-bielefeld.de/record/2949162

Zitieren

Lee S, Voll C. Zeta functions of integral nilpotent quiver representations. arXiv:2006.12346. 2020.
Lee, S., & Voll, C. (2020). Zeta functions of integral nilpotent quiver representations. arXiv:2006.12346
Lee, S., and Voll, C. (2020). Zeta functions of integral nilpotent quiver representations. arXiv:2006.12346.
Lee, S., & Voll, C., 2020. Zeta functions of integral nilpotent quiver representations. arXiv:2006.12346.
S. Lee and C. Voll, “Zeta functions of integral nilpotent quiver representations”, arXiv:2006.12346, 2020.
Lee, S., Voll, C.: Zeta functions of integral nilpotent quiver representations. arXiv:2006.12346. (2020).
Lee, Seungjai, and Voll, Christopher. “Zeta functions of integral nilpotent quiver representations”. arXiv:2006.12346 (2020).

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Quellen

arXiv: 2006.12346

Suchen in

Google Scholar