Zeta functions of integral nilpotent quiver representations
Lee S, Voll C (2021)
International Mathematics Research Notices.
Zeitschriftenaufsatz
| E-Veröff. vor dem Druck | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Einrichtung
Abstract / Bemerkung
We introduce and study multivariate zeta functions enumerating subrepresentations of integral quiver representations. For nilpotent such representations defined over number fields, we exhibit a homogeneity condition that we prove to be sufficient for local functional equations of the generic Euler factors of these zeta functions. This generalizes and unifies previous work on submodule zeta functions including, specifically, ideal zeta functions of nilpotent (Lie) rings and their graded analogues.
Erscheinungsjahr
2021
Zeitschriftentitel
International Mathematics Research Notices
ISSN
1073-7928
eISSN
1687-0247
Page URI
https://pub.uni-bielefeld.de/record/2949162
Zitieren
Lee S, Voll C. Zeta functions of integral nilpotent quiver representations. International Mathematics Research Notices. 2021.
Lee, S., & Voll, C. (2021). Zeta functions of integral nilpotent quiver representations. International Mathematics Research Notices. https://doi.org/10.1093/imrn/rnab345
Lee, Seungjai, and Voll, Christopher. 2021. “Zeta functions of integral nilpotent quiver representations”. International Mathematics Research Notices.
Lee, S., and Voll, C. (2021). Zeta functions of integral nilpotent quiver representations. International Mathematics Research Notices.
Lee, S., & Voll, C., 2021. Zeta functions of integral nilpotent quiver representations. International Mathematics Research Notices.
S. Lee and C. Voll, “Zeta functions of integral nilpotent quiver representations”, International Mathematics Research Notices, 2021.
Lee, S., Voll, C.: Zeta functions of integral nilpotent quiver representations. International Mathematics Research Notices. (2021).
Lee, Seungjai, and Voll, Christopher. “Zeta functions of integral nilpotent quiver representations”. International Mathematics Research Notices (2021).
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
arXiv: 2006.12346
Preprint: 10.48550/arXiv.2006.12346
Suchen in