Lavrentiev gap for some classes of generalized Orlicz functions

Khripunova Balci A, Surnachev M (2021)
Nonlinear Analysis 207: 112329.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Khripunova Balci, AnnaUniBi ; Surnachev, Mikhail
Abstract / Bemerkung
In the present paper we find optimal conditions separating the regular case from the one with Lavrentiev gap for the borderline case of double phase potential with one saddle point and related general classes of integrands. (C) 2021 Elsevier Ltd. All rights reserved.
Erscheinungsjahr
2021
Zeitschriftentitel
Nonlinear Analysis
Band
207
Art.-Nr.
112329
ISSN
0362-546X
eISSN
1873-5215
Page URI
https://pub.uni-bielefeld.de/record/2948384

Zitieren

Khripunova Balci A, Surnachev M. Lavrentiev gap for some classes of generalized Orlicz functions. Nonlinear Analysis. 2021;207: 112329.
Khripunova Balci, A., & Surnachev, M. (2021). Lavrentiev gap for some classes of generalized Orlicz functions. Nonlinear Analysis, 207, 112329. https://doi.org/10.1016/j.na.2021.112329
Khripunova Balci, A., and Surnachev, M. (2021). Lavrentiev gap for some classes of generalized Orlicz functions. Nonlinear Analysis 207:112329.
Khripunova Balci, A., & Surnachev, M., 2021. Lavrentiev gap for some classes of generalized Orlicz functions. Nonlinear Analysis, 207: 112329.
A. Khripunova Balci and M. Surnachev, “Lavrentiev gap for some classes of generalized Orlicz functions”, Nonlinear Analysis, vol. 207, 2021, : 112329.
Khripunova Balci, A., Surnachev, M.: Lavrentiev gap for some classes of generalized Orlicz functions. Nonlinear Analysis. 207, : 112329 (2021).
Khripunova Balci, Anna, and Surnachev, Mikhail. “Lavrentiev gap for some classes of generalized Orlicz functions”. Nonlinear Analysis 207 (2021): 112329.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

arXiv: 2010.03264

Suchen in

Google Scholar