Maximum approximate likelihood estimation of general continuous-time state-space models
Mews S, Langrock R, Ötting M, Yaqine H, Reinecke J (2024)
Statistical Modelling 24(1): 09-28.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Einrichtung
Fakultät für Wirtschaftswissenschaften > Lehrstuhl für Statistik und Datenanalyse
Fakultät für Soziologie > Arbeitsbereich 2 - Methoden der empirischen Sozialforschung
Fakultät für Wirtschaftswissenschaften > Lehrstuhl für Data Science
SFB/Transregio 212 „A Novel Synthesis of Individualisation across Behaviour, Ecology and Evolution: Niche Choice, Niche Conformance, Niche Construction (NC³)“
Fakultät für Soziologie > Arbeitsbereich 2 - Methoden der empirischen Sozialforschung
Fakultät für Wirtschaftswissenschaften > Lehrstuhl für Data Science
SFB/Transregio 212 „A Novel Synthesis of Individualisation across Behaviour, Ecology and Evolution: Niche Choice, Niche Conformance, Niche Construction (NC³)“
Abstract / Bemerkung
Continuous-time state-space models (SSMs) are flexible tools for analysing irregularly sampled sequential observations that are driven by an underlying state process. Corresponding applications typically involve restrictive assumptions concerning linearity and Gaussianity to facilitate inference on the model parameters via the Kalman filter. In this contribution, we provide a general continuous-time SSM framework, allowing both the observation and the state process to be non-linear and non-Gaussian. Statistical inference is carried out by maximum approximate likelihood estimation, where multiple numerical integration within the likelihood evaluation is performed via a fine discretization of the state process. The corresponding reframing of the SSM as a continuous-time hidden Markov model, with structured state transitions, enables us to apply the associated efficient algorithms for parameter estimation and state decoding. We illustrate the modelling approach in a case study using data from a longitudinal study on delinquent behaviour of adolescents in Germany, revealing temporal persistence in the deviation of an individual's delinquency level from the population mean.
Erscheinungsjahr
2024
Zeitschriftentitel
Statistical Modelling
Band
24
Ausgabe
1
Seite(n)
09-28
ISSN
1471-082X
eISSN
1477-0342
Page URI
https://pub.uni-bielefeld.de/record/2947369
Zitieren
Mews S, Langrock R, Ötting M, Yaqine H, Reinecke J. Maximum approximate likelihood estimation of general continuous-time state-space models. Statistical Modelling. 2024;24(1):09-28.
Mews, S., Langrock, R., Ötting, M., Yaqine, H., & Reinecke, J. (2024). Maximum approximate likelihood estimation of general continuous-time state-space models. Statistical Modelling, 24(1), 09-28. https://doi.org/10.1177/1471082X211065785
Mews, Sina, Langrock, Roland, Ötting, Marius, Yaqine, Houda, and Reinecke, Jost. 2024. “ Maximum approximate likelihood estimation of general continuous-time state-space models”. Statistical Modelling 24 (1): 09-28.
Mews, S., Langrock, R., Ötting, M., Yaqine, H., and Reinecke, J. (2024). Maximum approximate likelihood estimation of general continuous-time state-space models. Statistical Modelling 24, 09-28.
Mews, S., et al., 2024. Maximum approximate likelihood estimation of general continuous-time state-space models. Statistical Modelling, 24(1), p 09-28.
S. Mews, et al., “ Maximum approximate likelihood estimation of general continuous-time state-space models”, Statistical Modelling, vol. 24, 2024, pp. 09-28.
Mews, S., Langrock, R., Ötting, M., Yaqine, H., Reinecke, J.: Maximum approximate likelihood estimation of general continuous-time state-space models. Statistical Modelling. 24, 09-28 (2024).
Mews, Sina, Langrock, Roland, Ötting, Marius, Yaqine, Houda, and Reinecke, Jost. “ Maximum approximate likelihood estimation of general continuous-time state-space models”. Statistical Modelling 24.1 (2024): 09-28.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in