Complete Nuclear Permutation Inversion Invariant Artificial Neural Network (CNPI-ANN) Diabatization for the Accurate Treatment of Vibronic Coupling Problems

Williams D, Eisfeld W (2020)
Journal of Physical Chemistry A 124(37): 7608-7621.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
A recently developed scheme to produce accurate high-dimensional coupled diabatic potential energy surfaces (PESs) based on artificial neural networks (ANNs) [J. Chem. Phys. 2018, 149, 204106 and J. Chem. Phys. 2019, 151, 164118] is modified to account for the proper complete nuclear permutation inversion (CNPI) invariance. This new approach cures the problem intrinsic to the highly flexible ANN representation of diabatic PESs to account for the proper molecular symmetry accurately. It turns out that the use of CNPI invariants as coordinates for the input layer of the ANN leads to a much more compact and thus more efficient representation of the diabatic PES model without any loss of accuracy. In connection with a properly symmetrized vibronic coupling reference model, which is modified by the output neurons of the CNPI-ANN, the resulting adiabatic PESs show perfect symmetry and high accuracy. In the present paper, the new approach will be described and thoroughly tested. The test case is the representation and corresponding vibrational/vibronic nuclear dynamics of the low-lying electronic states of planar NO3 for which a large number of ab initio data is available. Thus, the present results can be compared directly with the previous studies.
Erscheinungsjahr
2020
Zeitschriftentitel
Journal of Physical Chemistry A
Band
124
Ausgabe
37
Seite(n)
7608-7621
ISSN
1089-5639
eISSN
1520-5215
Page URI
https://pub.uni-bielefeld.de/record/2946755

Zitieren

Williams D, Eisfeld W. Complete Nuclear Permutation Inversion Invariant Artificial Neural Network (CNPI-ANN) Diabatization for the Accurate Treatment of Vibronic Coupling Problems. Journal of Physical Chemistry A. 2020;124(37):7608-7621.
Williams, D., & Eisfeld, W. (2020). Complete Nuclear Permutation Inversion Invariant Artificial Neural Network (CNPI-ANN) Diabatization for the Accurate Treatment of Vibronic Coupling Problems. Journal of Physical Chemistry A, 124(37), 7608-7621. https://doi.org/10.1021/acs.jpca.0c05991
Williams, David, and Eisfeld, Wolfgang. 2020. “Complete Nuclear Permutation Inversion Invariant Artificial Neural Network (CNPI-ANN) Diabatization for the Accurate Treatment of Vibronic Coupling Problems”. Journal of Physical Chemistry A 124 (37): 7608-7621.
Williams, D., and Eisfeld, W. (2020). Complete Nuclear Permutation Inversion Invariant Artificial Neural Network (CNPI-ANN) Diabatization for the Accurate Treatment of Vibronic Coupling Problems. Journal of Physical Chemistry A 124, 7608-7621.
Williams, D., & Eisfeld, W., 2020. Complete Nuclear Permutation Inversion Invariant Artificial Neural Network (CNPI-ANN) Diabatization for the Accurate Treatment of Vibronic Coupling Problems. Journal of Physical Chemistry A, 124(37), p 7608-7621.
D. Williams and W. Eisfeld, “Complete Nuclear Permutation Inversion Invariant Artificial Neural Network (CNPI-ANN) Diabatization for the Accurate Treatment of Vibronic Coupling Problems”, Journal of Physical Chemistry A, vol. 124, 2020, pp. 7608-7621.
Williams, D., Eisfeld, W.: Complete Nuclear Permutation Inversion Invariant Artificial Neural Network (CNPI-ANN) Diabatization for the Accurate Treatment of Vibronic Coupling Problems. Journal of Physical Chemistry A. 124, 7608-7621 (2020).
Williams, David, and Eisfeld, Wolfgang. “Complete Nuclear Permutation Inversion Invariant Artificial Neural Network (CNPI-ANN) Diabatization for the Accurate Treatment of Vibronic Coupling Problems”. Journal of Physical Chemistry A 124.37 (2020): 7608-7621.

Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

References

Daten bereitgestellt von Europe PubMed Central.

Material in PUB:
Teil dieser Dissertation
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 32786968
PubMed | Europe PMC

Suchen in

Google Scholar