Models of degenerate random conductances with stable-like jumps
Bosnić F (2020)
Bielefeld: Universität Bielefeld.
Bielefelder E-Dissertation | Englisch
Download

Autor*in
Gutachter*in / Betreuer*in
Einrichtung
Projekt
Abstract / Bemerkung
The thesis proves the quenched invariance principle for two models of long-range random conductances on the rectangular lattice of dimension at least 2. The conductances are assumed to be either i.i.d. or ergodic and to decay as a power of the distance, analogous to jumping measures of stable processes. Under certain moment conditions on the distribution, we prove the quenched invariance principle as well as large scale parabolic Harnack inequality.
Jahr
2020
Urheberrecht / Lizenzen
Page URI
https://pub.uni-bielefeld.de/record/2944741
Zitieren
Bosnić F. Models of degenerate random conductances with stable-like jumps. Bielefeld: Universität Bielefeld; 2020.
Bosnić, F. (2020). Models of degenerate random conductances with stable-like jumps. Bielefeld: Universität Bielefeld. https://doi.org/10.4119/unibi/2944741
Bosnić, Filip. 2020. Models of degenerate random conductances with stable-like jumps. Bielefeld: Universität Bielefeld.
Bosnić, F. (2020). Models of degenerate random conductances with stable-like jumps. Bielefeld: Universität Bielefeld.
Bosnić, F., 2020. Models of degenerate random conductances with stable-like jumps, Bielefeld: Universität Bielefeld.
F. Bosnić, Models of degenerate random conductances with stable-like jumps, Bielefeld: Universität Bielefeld, 2020.
Bosnić, F.: Models of degenerate random conductances with stable-like jumps. Universität Bielefeld, Bielefeld (2020).
Bosnić, Filip. Models of degenerate random conductances with stable-like jumps. Bielefeld: Universität Bielefeld, 2020.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International Public License (CC BY-SA 4.0):
Volltext(e)
Name
Dissertation Bosnic.pdf
1.19 MB
Access Level

Zuletzt Hochgeladen
2020-07-16T12:58:51Z
MD5 Prüfsumme
ad7476cd08c4b909b4611b5590d51df1