A note on stochastic dominance, uniform integrability and lattice properties
Nendel M (2020)
Bulletin of the London Mathematical Society 52(5): 907-923.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
blms.12371.pdf
231.68 KB
Autor*in
Abstract / Bemerkung
In this work, we discuss completeness for the lattice orders of first and second order stochastic dominance. The main results state that both first- and second-order stochastic dominance induce Dedekind super complete lattices, that is, lattices in which every bounded nonempty subset has a countable subset with identical least upper bound and greatest lower bound. Moreover, we show that, if a suitably bounded set of probability measures is directed (for example, a lattice), then the supremum and infimum with respect to first-order or second-order stochastic dominance can be approximated by sequences in the weak topology or in the Wasserstein-1 topology, respectively. As a consequence, we are able to prove that a sublattice of probability measures is complete with respect to first-order stochastic dominance or second-order stochastic dominance and increasing convex order if and only if it is compact in the weak topology or in the Wasserstein-1 topology, respectively. This complements a set of characterizations of tightness and uniform integrability, which are discussed in a preliminary section.
Stichworte
60E15 (primary);
60B10;
06B23 (secondary)
Erscheinungsjahr
2020
Zeitschriftentitel
Bulletin of the London Mathematical Society
Band
52
Ausgabe
5
Seite(n)
907-923
Urheberrecht / Lizenzen
ISSN
0024-6093
eISSN
1469-2120
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Universität Bielefeld im Rahmen des DEAL-Vertrags gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2944509
Zitieren
Nendel M. A note on stochastic dominance, uniform integrability and lattice properties. Bulletin of the London Mathematical Society. 2020;52(5):907-923.
Nendel, M. (2020). A note on stochastic dominance, uniform integrability and lattice properties. Bulletin of the London Mathematical Society, 52(5), 907-923. https://doi.org/10.1112/blms.12371
Nendel, Max. 2020. “A note on stochastic dominance, uniform integrability and lattice properties”. Bulletin of the London Mathematical Society 52 (5): 907-923.
Nendel, M. (2020). A note on stochastic dominance, uniform integrability and lattice properties. Bulletin of the London Mathematical Society 52, 907-923.
Nendel, M., 2020. A note on stochastic dominance, uniform integrability and lattice properties. Bulletin of the London Mathematical Society, 52(5), p 907-923.
M. Nendel, “A note on stochastic dominance, uniform integrability and lattice properties”, Bulletin of the London Mathematical Society, vol. 52, 2020, pp. 907-923.
Nendel, M.: A note on stochastic dominance, uniform integrability and lattice properties. Bulletin of the London Mathematical Society. 52, 907-923 (2020).
Nendel, Max. “A note on stochastic dominance, uniform integrability and lattice properties”. Bulletin of the London Mathematical Society 52.5 (2020): 907-923.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Name
blms.12371.pdf
231.68 KB
Access Level
Open Access
Zuletzt Hochgeladen
2021-01-29T12:37:56Z
MD5 Prüfsumme
359a76c2c289bb6a5b4f337bab50220d
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Suchen in