Adapting Planck's route to investigate the thermodynamics of the spin-half pyrochlore Heisenberg antiferromagnet

Derzhko O, Hutak T, Krokhmalskii T, Schnack J, Richter J (2020)
PHYSICAL REVIEW B 101(17): 174426.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Derzhko, Oleg; Hutak, Taras; Krokhmalskii, Taras; Schnack, JürgenUniBi ; Richter, Johannes
Abstract / Bemerkung
The spin-half pyrochlore Heisenberg antiferromagnet (PHAF) is one of the most challenging problems in the field of highly frustrated quantum magnetism. Stimulated by the seminal paper of M. Planck [M. Planck, Verhandl. Dtsch. phys. Ges. 2, 202 (1900)] we calculate thermodynamic properties of this model by interpolating between the low- and high-temperature behavior. For that we follow ideas developed in detail by B. Bernu and G. Misguich and use for the interpolation the entropy exploiting sum rules [the "entropy method" (EM)]. We complement the EM results for the specific heat, the entropy, and the susceptibility by corresponding results obtained by the finite-temperature Lanczos method (FTLM) for a finite lattice of N = 32 sites as well as by the high-temperature expansion (HTE) data. We find that due to pronounced finite-size effects the FTLM data for N = 32 are not representative for the infinite system below T approximate to 0.7. A similar restriction to T greater than or similar to 0.7 holds for the HTE designed for the infinite PHAF. By contrast, the EM provides reliable data for the whole temperature region for the infinite PHAF. We find evidence for a gapless spectrum leading to a power-law behavior of the specific heat at low T and for a single maximum in c(T) at T approximate to 0.25. For the susceptibility chi(T) we find indications of a monotonous increase of chi upon decreasing of T reaching chi(0) approximate to 0.1 at T = 0. Moreover, the EM allows us to estimate the ground-state energy to e(0) approximate to -0.52.
Erscheinungsjahr
2020
Zeitschriftentitel
PHYSICAL REVIEW B
Band
101
Ausgabe
17
Art.-Nr.
174426
ISSN
2469-9950
eISSN
2469-9969
Page URI
https://pub.uni-bielefeld.de/record/2943804

Zitieren

Derzhko O, Hutak T, Krokhmalskii T, Schnack J, Richter J. Adapting Planck's route to investigate the thermodynamics of the spin-half pyrochlore Heisenberg antiferromagnet. PHYSICAL REVIEW B. 2020;101(17): 174426.
Derzhko, O., Hutak, T., Krokhmalskii, T., Schnack, J., & Richter, J. (2020). Adapting Planck's route to investigate the thermodynamics of the spin-half pyrochlore Heisenberg antiferromagnet. PHYSICAL REVIEW B, 101(17), 174426. doi:10.1103/PhysRevB.101.174426
Derzhko, Oleg, Hutak, Taras, Krokhmalskii, Taras, Schnack, Jürgen, and Richter, Johannes. 2020. “Adapting Planck's route to investigate the thermodynamics of the spin-half pyrochlore Heisenberg antiferromagnet”. PHYSICAL REVIEW B 101 (17): 174426.
Derzhko, O., Hutak, T., Krokhmalskii, T., Schnack, J., and Richter, J. (2020). Adapting Planck's route to investigate the thermodynamics of the spin-half pyrochlore Heisenberg antiferromagnet. PHYSICAL REVIEW B 101:174426.
Derzhko, O., et al., 2020. Adapting Planck's route to investigate the thermodynamics of the spin-half pyrochlore Heisenberg antiferromagnet. PHYSICAL REVIEW B, 101(17): 174426.
O. Derzhko, et al., “Adapting Planck's route to investigate the thermodynamics of the spin-half pyrochlore Heisenberg antiferromagnet”, PHYSICAL REVIEW B, vol. 101, 2020, : 174426.
Derzhko, O., Hutak, T., Krokhmalskii, T., Schnack, J., Richter, J.: Adapting Planck's route to investigate the thermodynamics of the spin-half pyrochlore Heisenberg antiferromagnet. PHYSICAL REVIEW B. 101, : 174426 (2020).
Derzhko, Oleg, Hutak, Taras, Krokhmalskii, Taras, Schnack, Jürgen, and Richter, Johannes. “Adapting Planck's route to investigate the thermodynamics of the spin-half pyrochlore Heisenberg antiferromagnet”. PHYSICAL REVIEW B 101.17 (2020): 174426.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Suchen in

Google Scholar