Optimal Dividend Payout under Stochastic Discounting
Bandini E, de Angelis T, Ferrari G, Gozzi F (2020) Center for Mathematical Economics Working Papers; 636.
Bielefeld: Center for Mathematical Economics.
Diskussionspapier
| Veröffentlicht | Englisch
Download
IMW_working_paper_636.pdf
647.48 KB
Autor*in
Bandini, Elena;
de Angelis, Tiziano;
Ferrari, GiorgioUniBi;
Gozzi, Fausto
Abstract / Bemerkung
Adopting a probabilistic approach we determine the optimal dividend
payout policy of a firm whose surplus process follows a controlled arithmetic Brownian
motion and whose cash-flows are discounted at a stochastic dynamic rate. Dividends
can be paid to shareholders at unrestricted rates so that the problem is cast as one of
singular stochastic control. The stochastic interest rate is modelled by a Cox-Ingersoll-
Ross (CIR) process and the firm's objective is to maximize the total expected flow of
discounted dividends until a possible insolvency time.
We find an optimal dividend payout policy which is such that the surplus process is kept below an endogenously determined stochastic threshold expressed as a decreasing function $r \mapsto b(r)$ of the current interest rate value. We also prove that the value function of the singular control problem solves a variational inequality associated to a second-order, non-degenerate elliptic operator, with a gradient constraint.
2010 Mathematics Subject Classification. 91G50, 93E20, 60G40, 35R35
We find an optimal dividend payout policy which is such that the surplus process is kept below an endogenously determined stochastic threshold expressed as a decreasing function $r \mapsto b(r)$ of the current interest rate value. We also prove that the value function of the singular control problem solves a variational inequality associated to a second-order, non-degenerate elliptic operator, with a gradient constraint.
2010 Mathematics Subject Classification. 91G50, 93E20, 60G40, 35R35
Stichworte
Optimal dividend;
stochastic interest rates;
CIR model;
singular control;
optimal stopping;
free boundary problems
Erscheinungsjahr
2020
Serientitel
Center for Mathematical Economics Working Papers
Band
636
Seite(n)
35
ISSN
0931-6558
Page URI
https://pub.uni-bielefeld.de/record/2943684
Zitieren
Bandini E, de Angelis T, Ferrari G, Gozzi F. Optimal Dividend Payout under Stochastic Discounting. Center for Mathematical Economics Working Papers. Vol 636. Bielefeld: Center for Mathematical Economics; 2020.
Bandini, E., de Angelis, T., Ferrari, G., & Gozzi, F. (2020). Optimal Dividend Payout under Stochastic Discounting (Center for Mathematical Economics Working Papers, 636). Bielefeld: Center for Mathematical Economics.
Bandini, Elena, de Angelis, Tiziano, Ferrari, Giorgio, and Gozzi, Fausto. 2020. Optimal Dividend Payout under Stochastic Discounting. Vol. 636. Center for Mathematical Economics Working Papers. Bielefeld: Center for Mathematical Economics.
Bandini, E., de Angelis, T., Ferrari, G., and Gozzi, F. (2020). Optimal Dividend Payout under Stochastic Discounting. Center for Mathematical Economics Working Papers, 636, Bielefeld: Center for Mathematical Economics.
Bandini, E., et al., 2020. Optimal Dividend Payout under Stochastic Discounting, Center for Mathematical Economics Working Papers, no.636, Bielefeld: Center for Mathematical Economics.
E. Bandini, et al., Optimal Dividend Payout under Stochastic Discounting, Center for Mathematical Economics Working Papers, vol. 636, Bielefeld: Center for Mathematical Economics, 2020.
Bandini, E., de Angelis, T., Ferrari, G., Gozzi, F.: Optimal Dividend Payout under Stochastic Discounting. Center for Mathematical Economics Working Papers, 636. Center for Mathematical Economics, Bielefeld (2020).
Bandini, Elena, de Angelis, Tiziano, Ferrari, Giorgio, and Gozzi, Fausto. Optimal Dividend Payout under Stochastic Discounting. Bielefeld: Center for Mathematical Economics, 2020. Center for Mathematical Economics Working Papers. 636.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Name
IMW_working_paper_636.pdf
647.48 KB
Access Level
Open Access
Zuletzt Hochgeladen
2020-05-29T10:39:15Z
MD5 Prüfsumme
7356e4cbbc72f77b691b23b16d10c6e4