The parabolic p-Laplacian with fractional differentiability

Breit D, Diening L, Storn J, Wichmann J (2020) .

Preprint | Englisch
 
Download
OA 379.76 KB
Abstract / Bemerkung
We study the parabolic p-Laplacian system in a bounded domain. We deduce optimal convergence rates for the space-time discretization based on an implicit Euler scheme in time. Our estimates are expressed in terms of Nikolskii spaces and therefore cover situations when the (gradient of) the solution has only fractional derivatives in space and time. The main novelty is that, different to all previous results, we do not assume any coupling condition between the space and time resolution h and τ. The theoretical error analysis is complemented by numerical experiments.
Stichworte
Parabolic PDEs; Nonlinear Laplace-type systems; Finite element methods; Space-time discretization; p-heat equation
Erscheinungsjahr
2020
Page URI
https://pub.uni-bielefeld.de/record/2943289

Zitieren

Breit D, Diening L, Storn J, Wichmann J. The parabolic p-Laplacian with fractional differentiability. 2020.
Breit, D., Diening, L., Storn, J., & Wichmann, J. (2020). The parabolic p-Laplacian with fractional differentiability
Breit, D., Diening, L., Storn, J., and Wichmann, J. (2020). The parabolic p-Laplacian with fractional differentiability.
Breit, D., et al., 2020. The parabolic p-Laplacian with fractional differentiability.
D. Breit, et al., “The parabolic p-Laplacian with fractional differentiability”, 2020.
Breit, D., Diening, L., Storn, J., Wichmann, J.: The parabolic p-Laplacian with fractional differentiability. (2020).
Breit, Dominic, Diening, Lars, Storn, Johannes, and Wichmann, Jörn. “The parabolic p-Laplacian with fractional differentiability”. (2020).
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Name
Access Level
OA Open Access
Zuletzt Hochgeladen
2020-05-10T11:55:45Z
MD5 Prüfsumme
e47d8df715f0f4df8a65e8cfa9d250a6

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Quellen

arXiv: 2004.09919

Suchen in

Google Scholar