Enumerating isoclinism classes of semi-extraspecial groups

Lewis ML, Maglione J (2020)
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY 63(2): 426-442.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor*in
Lewis, Mark L.; Maglione, JoshUniBi
Abstract / Bemerkung
We enumerate the number of isoclinism classes of semi-extraspecial p-groups with derived subgroup of order p(2). To do this, we enumerate GL (2, p)-orbits of sets of irreducible, monic polynomials in F & xdd3d;(p)[x]. Along the way, we also provide a new construction of an infinite family of semi-extraspecial groups as central quotients of Heisenberg groups over local algebras.
Stichworte
Pfaffian; genus 2; bilinear maps
Erscheinungsjahr
2020
Zeitschriftentitel
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY
Band
63
Ausgabe
2
Art.-Nr.
426-442
ISSN
0013-0915
eISSN
1464-3839
Page URI
https://pub.uni-bielefeld.de/record/2942889

Zitieren

Lewis ML, Maglione J. Enumerating isoclinism classes of semi-extraspecial groups. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY. 2020;63(2): 426-442.
Lewis, M. L., & Maglione, J. (2020). Enumerating isoclinism classes of semi-extraspecial groups. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 63(2), 426-442. doi:10.1017/S0013091519000531
Lewis, M. L., and Maglione, J. (2020). Enumerating isoclinism classes of semi-extraspecial groups. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY 63:426-442.
Lewis, M.L., & Maglione, J., 2020. Enumerating isoclinism classes of semi-extraspecial groups. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 63(2): 426-442.
M.L. Lewis and J. Maglione, “Enumerating isoclinism classes of semi-extraspecial groups”, PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, vol. 63, 2020, : 426-442.
Lewis, M.L., Maglione, J.: Enumerating isoclinism classes of semi-extraspecial groups. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY. 63, : 426-442 (2020).
Lewis, Mark L., and Maglione, Josh. “Enumerating isoclinism classes of semi-extraspecial groups”. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY 63.2 (2020): 426-442.