Smart microgels as drug delivery vehicles for the natural drug aescin: uptake, release and interactions

Dirksen M, Dargel C, Meyer L, Brandel T, Hellweg T (2020)
Colloid and polymer science 298: 505–518.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 2.45 MB
Autor*in
Abstract / Bemerkung
In the present study, we show how acrylamide-based microgels can be employed for the uptake and release of the drug beta-aescin, a widely used natural product with a variety of pharmacological effects. We show how aescin is incorporated into the microgel particles. It has an important influence on the structure of the microgels, by reducing their natural network-density gradient in the swollen state. Moreover, temperature-dependent measurements reveal how the incorporation of aescin stabilizes the microgel particles, while the volume phase transition temperature (VPTT) is almost constant, which is very important for the intended drug release. Finally, it is shown that upon increase of the temperature above the VPTT the particles are able to release aescin from their network, encouraging the use of this particular drug delivery system for hypothermia treatments.
Stichworte
Microgels; Drug delivery; Biosurfactants; Saponins; Aescin
Erscheinungsjahr
2020
Zeitschriftentitel
Colloid and polymer science
Band
298
Seite(n)
505–518
ISSN
0303-402X
eISSN
1435-1536
Page URI
https://pub.uni-bielefeld.de/record/2942728

Zitieren

Dirksen M, Dargel C, Meyer L, Brandel T, Hellweg T. Smart microgels as drug delivery vehicles for the natural drug aescin: uptake, release and interactions. Colloid and polymer science. 2020;298: 505–518.
Dirksen, M., Dargel, C., Meyer, L., Brandel, T., & Hellweg, T. (2020). Smart microgels as drug delivery vehicles for the natural drug aescin: uptake, release and interactions. Colloid and polymer science, 298, 505–518. doi:10.1007/s00396-020-04632-5
Dirksen, M., Dargel, C., Meyer, L., Brandel, T., and Hellweg, T. (2020). Smart microgels as drug delivery vehicles for the natural drug aescin: uptake, release and interactions. Colloid and polymer science 298, 505–518.
Dirksen, M., et al., 2020. Smart microgels as drug delivery vehicles for the natural drug aescin: uptake, release and interactions. Colloid and polymer science, 298, p 505–518.
M. Dirksen, et al., “Smart microgels as drug delivery vehicles for the natural drug aescin: uptake, release and interactions”, Colloid and polymer science, vol. 298, 2020, pp. 505–518.
Dirksen, M., Dargel, C., Meyer, L., Brandel, T., Hellweg, T.: Smart microgels as drug delivery vehicles for the natural drug aescin: uptake, release and interactions. Colloid and polymer science. 298, 505–518 (2020).
Dirksen, Maxim, Dargel, Carina, Meyer, Lukas, Brandel, Timo, and Hellweg, Thomas. “Smart microgels as drug delivery vehicles for the natural drug aescin: uptake, release and interactions”. Colloid and polymer science 298 (2020): 505–518.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2020-07-09T09:35:39Z
MD5 Prüfsumme
b1645f9227182a5c4fbff99dc810a3ac