Mosco convergence of nonlocal to local quadratic forms

Foghem Gounoue GF, Kaßmann M, Voigt P (2020)
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS 193(SI): 111504.

Zeitschriftenaufsatz | E-Veröff. vor dem Druck | Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
We study sequences of nonlocal quadratic forms and function spaces that are related to Markov jump processes in bounded domains with a Lipschitz boundary. Our aim is to show the convergence of these forms to local quadratic forms of gradient type. Under suitable conditions we establish the convergence in the sense of Mosco. Our framework allows bounded and unbounded nonlocal operators to be studied at the same time. Moreover, we prove that smooth functions with compact support are dense in the nonlocal function spaces under consideration. (C) 2019 Elsevier Ltd. All rights reserved.
Stichworte
Dirichlet forms; Mosco-convergence; Sobolev spaces; Integro-differential; operators
Erscheinungsjahr
2020
Zeitschriftentitel
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS
Band
193
Ausgabe
SI
Art.-Nr.
111504
ISSN
0362-546X
eISSN
1873-5215
Page URI
https://pub.uni-bielefeld.de/record/2941605

Zitieren

Foghem Gounoue GF, Kaßmann M, Voigt P. Mosco convergence of nonlocal to local quadratic forms. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS. 2020;193(SI): 111504.
Foghem Gounoue, G. F., Kaßmann, M., & Voigt, P. (2020). Mosco convergence of nonlocal to local quadratic forms. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 193(SI), 111504. doi:10.1016/j.na.2019.04.003
Foghem Gounoue, G. F., Kaßmann, M., and Voigt, P. (2020). Mosco convergence of nonlocal to local quadratic forms. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS 193:111504.
Foghem Gounoue, G.F., Kaßmann, M., & Voigt, P., 2020. Mosco convergence of nonlocal to local quadratic forms. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 193(SI): 111504.
G.F. Foghem Gounoue, M. Kaßmann, and P. Voigt, “Mosco convergence of nonlocal to local quadratic forms”, NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, vol. 193, 2020, : 111504.
Foghem Gounoue, G.F., Kaßmann, M., Voigt, P.: Mosco convergence of nonlocal to local quadratic forms. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS. 193, : 111504 (2020).
Foghem Gounoue, Guy Fabrice, Kaßmann, Moritz, and Voigt, Paul. “Mosco convergence of nonlocal to local quadratic forms”. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS 193.SI (2020): 111504.