Nash Smoothing on the Test Bench: $H_{\alpha}$ -Essential Equilibria
Duman P, Trockel W (2020) Center for Mathematical Economics Working Papers; 632.
Bielefeld: Center for Mathematical Economics.
Diskussionspapier
| Veröffentlicht | Englisch
Download
IMW_working_paper_632.pdf
285.56 KB
Autor*in
Duman, Papatya;
Trockel, WalterUniBi
Abstract / Bemerkung
We extend the analysis of van Damme (1987, Section 7.5) of the famous
smoothing demand in Nash (1953) as an argument for the singular stability of the
symmetric Nash bargaining solution among all Pareto efficient equilibria of the Nash
demand game. Van Damme's analysis provides a clean mathematical framework where
he substantiates Nash's conjecture by two fundamental theorems in which he proves
that the Nash solution is among all Nash equilibria of the Nash demand game the only
one that is *H*-essential. We show by generalizing this analysis that for any asymmetric
Nash bargaining solution a similar stability property can be established that we call
$H_{\alpha}$-essentiality. A special case of our result for α = 1/2 is $H_{1/2}$-essentiality that
coincides with van Damme's *H*-essentiality. Our analysis deprives the symmetric
Nash solution equilibrium of Nash's demand game of its exposed position and fortifies
our conviction that, in contrast to the predominant view in the related literature, the
only structural diffeerence between the asymmetric Nash solutions and the symmetric
one is that the latter one is symmetric.
While our proofs are mathematically straightforward given the analysis of van Damme
(1987), our results change drastically the prevalent interpretation of Nash's smoothing
of his demand game and dilute its conceptual importance.
Stichworte
2-person bargaining games;
α-symmetric Nash solution;
Nash demand game;
Nash soothing of games;
$H_{\alpha}$-essential Nash equilibrium
Erscheinungsjahr
2020
Serientitel
Center for Mathematical Economics Working Papers
Band
632
Seite(n)
17
ISSN
0931-6558
Page URI
https://pub.uni-bielefeld.de/record/2941268
Zitieren
Duman P, Trockel W. Nash Smoothing on the Test Bench: $H_{\alpha}$ -Essential Equilibria. Center for Mathematical Economics Working Papers. Vol 632. Bielefeld: Center for Mathematical Economics; 2020.
Duman, P., & Trockel, W. (2020). Nash Smoothing on the Test Bench: $H_{\alpha}$ -Essential Equilibria (Center for Mathematical Economics Working Papers, 632). Bielefeld: Center for Mathematical Economics.
Duman, Papatya, and Trockel, Walter. 2020. Nash Smoothing on the Test Bench: $H_{\alpha}$ -Essential Equilibria. Vol. 632. Center for Mathematical Economics Working Papers. Bielefeld: Center for Mathematical Economics.
Duman, P., and Trockel, W. (2020). Nash Smoothing on the Test Bench: $H_{\alpha}$ -Essential Equilibria. Center for Mathematical Economics Working Papers, 632, Bielefeld: Center for Mathematical Economics.
Duman, P., & Trockel, W., 2020. Nash Smoothing on the Test Bench: $H_{\alpha}$ -Essential Equilibria, Center for Mathematical Economics Working Papers, no.632, Bielefeld: Center for Mathematical Economics.
P. Duman and W. Trockel, Nash Smoothing on the Test Bench: $H_{\alpha}$ -Essential Equilibria, Center for Mathematical Economics Working Papers, vol. 632, Bielefeld: Center for Mathematical Economics, 2020.
Duman, P., Trockel, W.: Nash Smoothing on the Test Bench: $H_{\alpha}$ -Essential Equilibria. Center for Mathematical Economics Working Papers, 632. Center for Mathematical Economics, Bielefeld (2020).
Duman, Papatya, and Trockel, Walter. Nash Smoothing on the Test Bench: $H_{\alpha}$ -Essential Equilibria. Bielefeld: Center for Mathematical Economics, 2020. Center for Mathematical Economics Working Papers. 632.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Name
IMW_working_paper_632.pdf
285.56 KB
Access Level
Open Access
Zuletzt Hochgeladen
2020-02-17T16:07:37Z
MD5 Prüfsumme
071c218ce1bf984f325b836a77ab30f2