Local asymptotic normality for shape and periodicity of a signal in the drift of a degenerate diffusion with internal variables

Holbach S (2019)
ELECTRONIC JOURNAL OF STATISTICS 13(2): 4884-4915.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Taking a multidimensional time-homogeneous dynamical system and adding a randomly perturbed time-dependent deterministic signal to some of its components gives rise to a high-dimensional system of stochastic differential equations which is driven by possibly very low-dimensional noise. Equations of this type are commonly used in biology for modeling neurons or in statistical mechanics for certain Hamiltonian systems. Assuming that the signal depends on an unknown shape parameter theta and also has an unknown periodicity T, we prove Local Asymptotic Normality (LAN) jointly in theta and T for the statistical experiment arising from (partial) observation of this diffusion in continuous time. The local scale turns out to be n(-1/2) for theta and n(-3/2) for T. Our approach unifies and extends existing results on LAN in variants of the signal in noise model where the parameters theta and T are treated separately. Consequently, we can establish the same efficiency bounds in our more complex model and make use of efficient estimators known from these submodels.
Stichworte
Local asymptotic normality; parametric signal estimation; degenerate; diffusion; periodic drift; neuron models
Erscheinungsjahr
2019
Zeitschriftentitel
ELECTRONIC JOURNAL OF STATISTICS
Band
13
Ausgabe
2
Seite(n)
4884-4915
ISSN
1935-7524
Page URI
https://pub.uni-bielefeld.de/record/2940750

Zitieren

Holbach S. Local asymptotic normality for shape and periodicity of a signal in the drift of a degenerate diffusion with internal variables. ELECTRONIC JOURNAL OF STATISTICS. 2019;13(2):4884-4915.
Holbach, S. (2019). Local asymptotic normality for shape and periodicity of a signal in the drift of a degenerate diffusion with internal variables. ELECTRONIC JOURNAL OF STATISTICS, 13(2), 4884-4915. doi:10.1214/19-EJS1641
Holbach, S. (2019). Local asymptotic normality for shape and periodicity of a signal in the drift of a degenerate diffusion with internal variables. ELECTRONIC JOURNAL OF STATISTICS 13, 4884-4915.
Holbach, S., 2019. Local asymptotic normality for shape and periodicity of a signal in the drift of a degenerate diffusion with internal variables. ELECTRONIC JOURNAL OF STATISTICS, 13(2), p 4884-4915.
S. Holbach, “Local asymptotic normality for shape and periodicity of a signal in the drift of a degenerate diffusion with internal variables”, ELECTRONIC JOURNAL OF STATISTICS, vol. 13, 2019, pp. 4884-4915.
Holbach, S.: Local asymptotic normality for shape and periodicity of a signal in the drift of a degenerate diffusion with internal variables. ELECTRONIC JOURNAL OF STATISTICS. 13, 4884-4915 (2019).
Holbach, Simon. “Local asymptotic normality for shape and periodicity of a signal in the drift of a degenerate diffusion with internal variables”. ELECTRONIC JOURNAL OF STATISTICS 13.2 (2019): 4884-4915.