Global actions and vector K-Theory

Bak A, Garge AS (2020)
Forum of Mathematics, Sigma 8: e4.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
OA 309.55 KB
Bak, AnthonyUniBi; Garge, Anuradha S.
Abstract / Bemerkung
Purely algebraic objects like abstract groups, coset spaces, and G-modules do not have a notion ofhole as do analytical and topological objects. However, equipping an algebraic object with a globalaction reveals holes in it and thanks to the homotopy theory of global actions, the holes can bedescribed and quantified much as they are in the homotopy theory of topological spaces. Part I ofthis article, due to the first author, starts by recalling the notion of a global action and describesin detail the global actions attached to the general linear, elementary, and Steinberg groups. Withthese examples in mind, we describe the elementary homotopy theory of arbitrary global actions,construct their homotopy groups, and revisit their covering theory. We then equip the setU mn(R)of all unimodular row vectors of lengthnover a ringRwith a global action. Its homotopy groupsπi(U mn(R)),i>0 are christened the vectorK-theory groupsKi+1(U mn(R)),i>0 ofU mn(R).It is known that the homotopy groupsπi(GLn(R))of the general linear group GLn(R)viewed as aglobal action are the VolodinK-theory groupsKi+1,n(R). The main result of Part I is an algebraicconstruction of the simply connected covering mapStUmn(R)→EUmn(R)whereEUmn(R)is thepath connected component of the vector(1,0,...,0)∈U mn(R). The result constructs the map as aspecific quotient of the simply connected covering mapStn(R)→En(R)of the elementary globalactionEn(R)by the Steinberg global actionStn(R). As expected,K2(U mn(R))is identified withKer(StUmn(R)→EUmn(R)). Part II of the paper provides an exact sequence relating stability forthe VolodinK-theory groupsK1,n(R)andK2,n(R)to vectorK-theory groups.
Forum of Mathematics, Sigma
Page URI


Bak A, Garge AS. Global actions and vector K-Theory. Forum of Mathematics, Sigma. 2020;8: e4.
Bak, A., & Garge, A. S. (2020). Global actions and vector K-Theory. Forum of Mathematics, Sigma, 8, e4. doi:10.1017/fms.2019.30
Bak, A., and Garge, A. S. (2020). Global actions and vector K-Theory. Forum of Mathematics, Sigma 8:e4.
Bak, A., & Garge, A.S., 2020. Global actions and vector K-Theory. Forum of Mathematics, Sigma, 8: e4.
A. Bak and A.S. Garge, “Global actions and vector K-Theory”, Forum of Mathematics, Sigma, vol. 8, 2020, : e4.
Bak, A., Garge, A.S.: Global actions and vector K-Theory. Forum of Mathematics, Sigma. 8, : e4 (2020).
Bak, Anthony, and Garge, Anuradha S. “Global actions and vector K-Theory”. Forum of Mathematics, Sigma 8 (2020): e4.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Suchen in

Google Scholar