Classifying spaces from Ore categories with Garside families

Witzel S (2019)
ALGEBRAIC AND GEOMETRIC TOPOLOGY 19(3): 1477-1524.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
We describe how an Ore category with a Garside family can be used to construct a classifying space for its fundamental group(s). The construction simultaneously generalizes Brady's classifying space for braid groups and the Stein-Farley complexes used for various relatives of Thompson's groups. It recovers the fact that Garside groups have finite classifying spaces. We describe the categories and Garside structures underlying certain Thompson groups. The indirect product of categories is introduced and used to construct new categories and groups from known ones. As an illustration of our methods we introduce the group braided T and show that it is of type F-infinity.
Erscheinungsjahr
2019
Zeitschriftentitel
ALGEBRAIC AND GEOMETRIC TOPOLOGY
Band
19
Ausgabe
3
Seite(n)
1477-1524
ISSN
1472-2739
Page URI
https://pub.uni-bielefeld.de/record/2940114

Zitieren

Witzel S. Classifying spaces from Ore categories with Garside families. ALGEBRAIC AND GEOMETRIC TOPOLOGY. 2019;19(3):1477-1524.
Witzel, S. (2019). Classifying spaces from Ore categories with Garside families. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 19(3), 1477-1524. doi:10.2140/agt.2019.19.1477
Witzel, S. (2019). Classifying spaces from Ore categories with Garside families. ALGEBRAIC AND GEOMETRIC TOPOLOGY 19, 1477-1524.
Witzel, S., 2019. Classifying spaces from Ore categories with Garside families. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 19(3), p 1477-1524.
S. Witzel, “Classifying spaces from Ore categories with Garside families”, ALGEBRAIC AND GEOMETRIC TOPOLOGY, vol. 19, 2019, pp. 1477-1524.
Witzel, S.: Classifying spaces from Ore categories with Garside families. ALGEBRAIC AND GEOMETRIC TOPOLOGY. 19, 1477-1524 (2019).
Witzel, Stefan. “Classifying spaces from Ore categories with Garside families”. ALGEBRAIC AND GEOMETRIC TOPOLOGY 19.3 (2019): 1477-1524.