Blocks in Tricarboxylic Acid Cycle of Salmonella enterica Cause Global Perturbation of Carbon Storage, Motility, and Host-Pathogen Interaction.

Noster J, Hansmeier N, Persicke M, Chao T-C, Kurre R, Popp J, Liss V, Reuter T, Hensel M (2019)
mSphere 4(6): e00796-19.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Noster, JaninaUniBi ; Hansmeier, Nicole; Persicke, MarcusUniBi; Chao, Tzu-Chiao; Kurre, Rainer; Popp, Jasmin; Liss, Viktoria; Reuter, Tatjana; Hensel, Michael
Abstract / Bemerkung
The tricarboxylic acid (TCA) cycle is a central metabolic hub in most cells. Virulence functions of bacterial pathogens such as facultative intracellular Salmonella enterica serovar Typhimurium (S Typhimurium) are closely connected to cellular metabolism. During systematic analyses of mutant strains with defects in the TCA cycle, a strain deficient in all fumarase isoforms (DeltafumABC) elicited a unique metabolic profile. Alongside fumarate, S Typhimurium DeltafumABC accumulates intermediates of the glycolysis and pentose phosphate pathway. Analyses by metabolomics and proteomics revealed that fumarate accumulation redirects carbon fluxes toward glycogen synthesis due to high (p)ppGpp levels. In addition, we observed reduced abundance of CheY, leading to altered motility and increased phagocytosis of S Typhimurium by macrophages. Deletion of glycogen synthase restored normal carbon fluxes and phagocytosis and partially restored levels of CheY. We propose that utilization of accumulated fumarate as carbon source induces a status similar to exponential- to stationary-growth-phase transition by switching from preferred carbon sources to fumarate, which increases (p)ppGpp levels and thereby glycogen synthesis. Thus, we observed a new form of interplay between metabolism of S Typhimurium and cellular functions and virulence.IMPORTANCE We performed perturbation analyses of the tricarboxylic acid cycle of the gastrointestinal pathogen Salmonella enterica serovar Typhimurium. The defect of fumarase activity led to accumulation of fumarate but also resulted in a global alteration of carbon fluxes, leading to increased storage of glycogen. Gross alterations were observed in proteome and metabolome compositions of fumarase-deficient Salmonella In turn, these changes were linked to aberrant motility patterns of the mutant strain and resulted in highly increased phagocytic uptake by macrophages. Our findings indicate that basic cellular functions and specific virulence functions in Salmonella critically depend on the proper function of the primary metabolism. Copyright © 2019 Noster et al.
Erscheinungsjahr
2019
Zeitschriftentitel
mSphere
Band
4
Ausgabe
6
Art.-Nr.
e00796-19
ISSN
2379-5042
eISSN
2379-5042
Page URI
https://pub.uni-bielefeld.de/record/2939579

Zitieren

Noster J, Hansmeier N, Persicke M, et al. Blocks in Tricarboxylic Acid Cycle of Salmonella enterica Cause Global Perturbation of Carbon Storage, Motility, and Host-Pathogen Interaction. mSphere. 2019;4(6): e00796-19.
Noster, J., Hansmeier, N., Persicke, M., Chao, T. - C., Kurre, R., Popp, J., Liss, V., et al. (2019). Blocks in Tricarboxylic Acid Cycle of Salmonella enterica Cause Global Perturbation of Carbon Storage, Motility, and Host-Pathogen Interaction. mSphere, 4(6), e00796-19. https://doi.org/10.1128/mSphere.00796-19
Noster, Janina, Hansmeier, Nicole, Persicke, Marcus, Chao, Tzu-Chiao, Kurre, Rainer, Popp, Jasmin, Liss, Viktoria, Reuter, Tatjana, and Hensel, Michael. 2019. “Blocks in Tricarboxylic Acid Cycle of Salmonella enterica Cause Global Perturbation of Carbon Storage, Motility, and Host-Pathogen Interaction.”. mSphere 4 (6): e00796-19.
Noster, J., Hansmeier, N., Persicke, M., Chao, T. - C., Kurre, R., Popp, J., Liss, V., Reuter, T., and Hensel, M. (2019). Blocks in Tricarboxylic Acid Cycle of Salmonella enterica Cause Global Perturbation of Carbon Storage, Motility, and Host-Pathogen Interaction. mSphere 4:e00796-19.
Noster, J., et al., 2019. Blocks in Tricarboxylic Acid Cycle of Salmonella enterica Cause Global Perturbation of Carbon Storage, Motility, and Host-Pathogen Interaction. mSphere, 4(6): e00796-19.
J. Noster, et al., “Blocks in Tricarboxylic Acid Cycle of Salmonella enterica Cause Global Perturbation of Carbon Storage, Motility, and Host-Pathogen Interaction.”, mSphere, vol. 4, 2019, : e00796-19.
Noster, J., Hansmeier, N., Persicke, M., Chao, T.-C., Kurre, R., Popp, J., Liss, V., Reuter, T., Hensel, M.: Blocks in Tricarboxylic Acid Cycle of Salmonella enterica Cause Global Perturbation of Carbon Storage, Motility, and Host-Pathogen Interaction. mSphere. 4, : e00796-19 (2019).
Noster, Janina, Hansmeier, Nicole, Persicke, Marcus, Chao, Tzu-Chiao, Kurre, Rainer, Popp, Jasmin, Liss, Viktoria, Reuter, Tatjana, and Hensel, Michael. “Blocks in Tricarboxylic Acid Cycle of Salmonella enterica Cause Global Perturbation of Carbon Storage, Motility, and Host-Pathogen Interaction.”. mSphere 4.6 (2019): e00796-19.

Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

References

Daten bereitgestellt von Europe PubMed Central.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 31826974
PubMed | Europe PMC

Suchen in

Google Scholar