The Zakharov system in dimension $d >= 4$

Candy T, Herr S, Nakanishi K (2019)
ArXiv: 1912.05820.

Preprint| Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor*in
Candy, Timothy; Herr, SebastianUniBi ; Nakanishi, Kenji
Abstract / Bemerkung
The sharp range of Sobolev spaces is determined in which the Cauchy problem for the classical Zakharov system is well-posed, which includes existence of solutions, uniqueness, persistence of initial regularity, and real-analytic dependence on the initial data. In addition, under a condition on the data for the Schr\"odinger equation at the lowest admissible regularity, global well-posedness and scattering is proved. The results cover energy-critical and energy-supercritical dimensions $d \geqslant 4$.
Erscheinungsjahr
2019
Zeitschriftentitel
ArXiv: 1912.05820
Page URI
https://pub.uni-bielefeld.de/record/2939554

Zitieren

Candy T, Herr S, Nakanishi K. The Zakharov system in dimension $d >= 4$. ArXiv: 1912.05820. 2019.
Candy, T., Herr, S., & Nakanishi, K. (2019). The Zakharov system in dimension $d >= 4$. ArXiv: 1912.05820
Candy, T., Herr, S., and Nakanishi, K. (2019). The Zakharov system in dimension $d >= 4$. ArXiv: 1912.05820.
Candy, T., Herr, S., & Nakanishi, K., 2019. The Zakharov system in dimension $d >= 4$. ArXiv: 1912.05820.
T. Candy, S. Herr, and K. Nakanishi, “The Zakharov system in dimension $d >= 4$”, ArXiv: 1912.05820, 2019.
Candy, T., Herr, S., Nakanishi, K.: The Zakharov system in dimension $d >= 4$. ArXiv: 1912.05820. (2019).
Candy, Timothy, Herr, Sebastian, and Nakanishi, Kenji. “The Zakharov system in dimension $d >= 4$”. ArXiv: 1912.05820 (2019).

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Quellen

arXiv: 1912.05820

Suchen in

Google Scholar