Diabatic neural network potentials for accurate vibronic quantum dynamics-The test case of planar NO3.

Williams D, Viel A, Eisfeld W (2019)
The Journal of chemical physics 151(16): 164118.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Abstract / Bemerkung
A recently developed scheme to produce high-dimensional coupled diabatic potential energy surfaces (PESs) based on artificial neural networks (ANNs) [D. M. G. Williams and W. Eisfeld, J. Chem. Phys. 149, 204106 (2019)] is tested for its viability for quantum dynamics applications. The method, capable of reproducing high-quality ab initio data with excellent accuracy, utilizes simple coupling matrices to produce a basic low-order diabatic potential matrix as an underlying backbone for the model. This crude model is then refined by making its expansion coefficients geometry-dependent by the output neurons of the ANN. This structure, strongly guided by a straightforward physical picture behind nonadiabatic coupling, combines structural simplicity with high accuracy, reproducing ab initio data without introducing unphysical artifacts to the surface, even for systems with complicated electronic structure. The properties of diabatic potentials obtained by this method are tested thoroughly in the present study. Vibrational/vibronic eigenstates are computed on the X and A states of NO3, a notoriously difficult Jahn-Teller system featuring strong nonadiabatic couplings and complex spectra. The method is investigated in terms of how consistently it produces dynamics results for PESs of similar (fitting) quality and how the results depend on the ANN size and ANN topography. A central aspect of this work is to understand the convergence properties of the new method in order to evaluate its predictive power. A previously developed, high-quality model utilizing a purely (high-order) polynomial ansatz is used as a reference to showcase improvements of the overall quality which can be obtained by the new method.
Erscheinungsjahr
2019
Zeitschriftentitel
The Journal of chemical physics
Band
151
Ausgabe
16
Art.-Nr.
164118
ISSN
0021-9606
eISSN
1089-7690
Page URI
https://pub.uni-bielefeld.de/record/2939038

Zitieren

Williams D, Viel A, Eisfeld W. Diabatic neural network potentials for accurate vibronic quantum dynamics-The test case of planar NO3. The Journal of chemical physics. 2019;151(16): 164118.
Williams, D., Viel, A., & Eisfeld, W. (2019). Diabatic neural network potentials for accurate vibronic quantum dynamics-The test case of planar NO3. The Journal of chemical physics, 151(16), 164118. https://doi.org/10.1063/1.5125851
Williams, David, Viel, Alexandra, and Eisfeld, Wolfgang. 2019. “Diabatic neural network potentials for accurate vibronic quantum dynamics-The test case of planar NO3.”. The Journal of chemical physics 151 (16): 164118.
Williams, D., Viel, A., and Eisfeld, W. (2019). Diabatic neural network potentials for accurate vibronic quantum dynamics-The test case of planar NO3. The Journal of chemical physics 151:164118.
Williams, D., Viel, A., & Eisfeld, W., 2019. Diabatic neural network potentials for accurate vibronic quantum dynamics-The test case of planar NO3. The Journal of chemical physics, 151(16): 164118.
D. Williams, A. Viel, and W. Eisfeld, “Diabatic neural network potentials for accurate vibronic quantum dynamics-The test case of planar NO3.”, The Journal of chemical physics, vol. 151, 2019, : 164118.
Williams, D., Viel, A., Eisfeld, W.: Diabatic neural network potentials for accurate vibronic quantum dynamics-The test case of planar NO3. The Journal of chemical physics. 151, : 164118 (2019).
Williams, David, Viel, Alexandra, and Eisfeld, Wolfgang. “Diabatic neural network potentials for accurate vibronic quantum dynamics-The test case of planar NO3.”. The Journal of chemical physics 151.16 (2019): 164118.

Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

References

Daten bereitgestellt von Europe PubMed Central.

Material in PUB:
Teil dieser Dissertation
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 31675871
PubMed | Europe PMC

Suchen in

Google Scholar