Tissue-Specific Subcellular Localization Prediction Using Multi-Label Markov Random Fields
Zhu L, Hofestädt R, Ester M (2019)
IEEE-ACM Transactions on Computational Biology and Bioinformatics 16(5): 1471-1482.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Einrichtung
Abstract / Bemerkung
The understanding of subcellular localization (SCL) of proteins and proteome variation in the different tissues and organs of the human body are two crucial aspects for increasing our knowledge of the dynamic rules of proteins, the cell biology, and the mechanism of diseases. Although there have been tremendous contributions to these two fields independently, the lack of knowledge of the variation of spatial distribution of proteins in the different tissues still exists. Here, we proposed an approach that allows predicting protein SCL on tissue specificity through the use of tissue-specific functional associations and physical protein-protein interactions (PPIs). We applied our previously developed Bayesian collective Markov random fields (BCMRFs) on tissue-specific protein-protein interaction network (PPI network) for nine types of tissues focusing on eight high-level SCL. The evaluated results demonstrate the strength of our approach in predicting tissue-specific SCL. We identified 1,314 proteins that their SCL were previously proven cell line dependent. We predicted 549 novel tissue-specific localized candidate proteins while some of them were validated via text-mining.
Stichworte
Proteins;
Markov processes;
Predictive models;
Labeling;
Biological;
tissues;
Diseases;
Graphical models;
Human protein subcellular;
localization;
protein-protein interaction;
tissue-specific analysis;
multi-label markov random field;
imbalanced multi-label classification
Erscheinungsjahr
2019
Zeitschriftentitel
IEEE-ACM Transactions on Computational Biology and Bioinformatics
Band
16
Ausgabe
5
Seite(n)
1471-1482
ISSN
1545-5963
eISSN
1557-9964
Page URI
https://pub.uni-bielefeld.de/record/2938754
Zitieren
Zhu L, Hofestädt R, Ester M. Tissue-Specific Subcellular Localization Prediction Using Multi-Label Markov Random Fields. IEEE-ACM Transactions on Computational Biology and Bioinformatics. 2019;16(5):1471-1482.
Zhu, L., Hofestädt, R., & Ester, M. (2019). Tissue-Specific Subcellular Localization Prediction Using Multi-Label Markov Random Fields. IEEE-ACM Transactions on Computational Biology and Bioinformatics, 16(5), 1471-1482. doi:10.1109/TCBB.2019.2897683
Zhu, Lu, Hofestädt, Ralf, and Ester, Martin. 2019. “Tissue-Specific Subcellular Localization Prediction Using Multi-Label Markov Random Fields”. IEEE-ACM Transactions on Computational Biology and Bioinformatics 16 (5): 1471-1482.
Zhu, L., Hofestädt, R., and Ester, M. (2019). Tissue-Specific Subcellular Localization Prediction Using Multi-Label Markov Random Fields. IEEE-ACM Transactions on Computational Biology and Bioinformatics 16, 1471-1482.
Zhu, L., Hofestädt, R., & Ester, M., 2019. Tissue-Specific Subcellular Localization Prediction Using Multi-Label Markov Random Fields. IEEE-ACM Transactions on Computational Biology and Bioinformatics, 16(5), p 1471-1482.
L. Zhu, R. Hofestädt, and M. Ester, “Tissue-Specific Subcellular Localization Prediction Using Multi-Label Markov Random Fields”, IEEE-ACM Transactions on Computational Biology and Bioinformatics, vol. 16, 2019, pp. 1471-1482.
Zhu, L., Hofestädt, R., Ester, M.: Tissue-Specific Subcellular Localization Prediction Using Multi-Label Markov Random Fields. IEEE-ACM Transactions on Computational Biology and Bioinformatics. 16, 1471-1482 (2019).
Zhu, Lu, Hofestädt, Ralf, and Ester, Martin. “Tissue-Specific Subcellular Localization Prediction Using Multi-Label Markov Random Fields”. IEEE-ACM Transactions on Computational Biology and Bioinformatics 16.5 (2019): 1471-1482.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
References
Daten bereitgestellt von Europe PubMed Central.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 30736003
PubMed | Europe PMC
Suchen in