An MCMC computational approach for a continuous time state-dependent regime switching diffusion process

Hibbah EH, El Maroufy H, Fuchs C, Ziad T (2019)
JOURNAL OF APPLIED STATISTICS 47: 1354-1374.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Hibbah, El Houcine; El Maroufy, Hamid; Fuchs, ChristianeUniBi ; Ziad, Taib
Abstract / Bemerkung
State-dependent regime switching diffusion processes or hybrid switching diffusion (HSD) processes are hard to simulate with classical methods which leads us to adopt a Markov chain Monte Carlo (MCMC) Bayesian approach very convenient to estimate complicated models such as the HSD one. In the HSD, the diffusion component is dependent on the switching discrete hidden regimes and the transition rates of the regime switching are dependent on the diffusion observations. Since in reality phenomena are only observed in discrete times, data imputation is called for to create more observations so as to have good approximations for the density of the diffusion process. Three categories of entities will be computed in a Bayesian context: The latent imputed observations, the regime switching states, and the parameters of the models. The latent imputed data is updated at random time intervals in block using a Metropolis Hastings algorithm. The switching states are computed by an adaptation of a forward filtering backward smoothing algorithm to the HSD model. The parameters are estimated after prior specifications and conditional posterior densities formulation using Gibbs sampler or Metropolis Hastings algorithm.
Stichworte
Hybrid switching diffusion model; data imputation; hidden states; computation; random time imputation; states computation
Erscheinungsjahr
2019
Zeitschriftentitel
JOURNAL OF APPLIED STATISTICS
Band
47
Seite(n)
1354-1374
ISSN
0266-4763
eISSN
1360-0532
Page URI
https://pub.uni-bielefeld.de/record/2938376

Zitieren

Hibbah EH, El Maroufy H, Fuchs C, Ziad T. An MCMC computational approach for a continuous time state-dependent regime switching diffusion process. JOURNAL OF APPLIED STATISTICS. 2019;47:1354-1374.
Hibbah, E. H., El Maroufy, H., Fuchs, C., & Ziad, T. (2019). An MCMC computational approach for a continuous time state-dependent regime switching diffusion process. JOURNAL OF APPLIED STATISTICS, 47, 1354-1374. https://doi.org/10.1080/02664763.2019.1677573
Hibbah, El Houcine, El Maroufy, Hamid, Fuchs, Christiane, and Ziad, Taib. 2019. “An MCMC computational approach for a continuous time state-dependent regime switching diffusion process”. JOURNAL OF APPLIED STATISTICS 47: 1354-1374.
Hibbah, E. H., El Maroufy, H., Fuchs, C., and Ziad, T. (2019). An MCMC computational approach for a continuous time state-dependent regime switching diffusion process. JOURNAL OF APPLIED STATISTICS 47, 1354-1374.
Hibbah, E.H., et al., 2019. An MCMC computational approach for a continuous time state-dependent regime switching diffusion process. JOURNAL OF APPLIED STATISTICS, 47, p 1354-1374.
E.H. Hibbah, et al., “An MCMC computational approach for a continuous time state-dependent regime switching diffusion process”, JOURNAL OF APPLIED STATISTICS, vol. 47, 2019, pp. 1354-1374.
Hibbah, E.H., El Maroufy, H., Fuchs, C., Ziad, T.: An MCMC computational approach for a continuous time state-dependent regime switching diffusion process. JOURNAL OF APPLIED STATISTICS. 47, 1354-1374 (2019).
Hibbah, El Houcine, El Maroufy, Hamid, Fuchs, Christiane, and Ziad, Taib. “An MCMC computational approach for a continuous time state-dependent regime switching diffusion process”. JOURNAL OF APPLIED STATISTICS 47 (2019): 1354-1374.

Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

References

Daten bereitgestellt von Europe PubMed Central.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 35706700
PubMed | Europe PMC

Suchen in

Google Scholar