Weighted 1 x 1 Cut-and-Project Sets in Bounded Distance to a Lattice

Frettlöh D, Garber A (2019)
DISCRETE & COMPUTATIONAL GEOMETRY 62(3): 649-661.

Zeitschriftenaufsatz | Veröffentlicht| Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor/in
Frettlöh, DirkUniBi; Garber, Alexey
Abstract / Bemerkung
Recent results of Grepstad and Larcher are used to show that weighted cut-and-project sets with one-dimensional direct space and one-dimensional internal space are bounded distance equivalent to some lattice if the weight function h is continuous on the internal space, and if h is either piecewise linear, or twice differentiable with bounded curvature.
Stichworte
Cut-and-project sets; Bounded distance equivalence; Bounded remainder; sets
Erscheinungsjahr
2019
Zeitschriftentitel
DISCRETE & COMPUTATIONAL GEOMETRY
Band
62
Ausgabe
3
Seite(n)
649-661
ISSN
0179-5376
eISSN
1432-0444
Page URI
https://pub.uni-bielefeld.de/record/2937849

Zitieren

Frettlöh D, Garber A. Weighted 1 x 1 Cut-and-Project Sets in Bounded Distance to a Lattice. DISCRETE & COMPUTATIONAL GEOMETRY. 2019;62(3):649-661.
Frettlöh, D., & Garber, A. (2019). Weighted 1 x 1 Cut-and-Project Sets in Bounded Distance to a Lattice. DISCRETE & COMPUTATIONAL GEOMETRY, 62(3), 649-661. doi:10.1007/s00454-018-0005-1
Frettlöh, D., and Garber, A. (2019). Weighted 1 x 1 Cut-and-Project Sets in Bounded Distance to a Lattice. DISCRETE & COMPUTATIONAL GEOMETRY 62, 649-661.
Frettlöh, D., & Garber, A., 2019. Weighted 1 x 1 Cut-and-Project Sets in Bounded Distance to a Lattice. DISCRETE & COMPUTATIONAL GEOMETRY, 62(3), p 649-661.
D. Frettlöh and A. Garber, “Weighted 1 x 1 Cut-and-Project Sets in Bounded Distance to a Lattice”, DISCRETE & COMPUTATIONAL GEOMETRY, vol. 62, 2019, pp. 649-661.
Frettlöh, D., Garber, A.: Weighted 1 x 1 Cut-and-Project Sets in Bounded Distance to a Lattice. DISCRETE & COMPUTATIONAL GEOMETRY. 62, 649-661 (2019).
Frettlöh, Dirk, and Garber, Alexey. “Weighted 1 x 1 Cut-and-Project Sets in Bounded Distance to a Lattice”. DISCRETE & COMPUTATIONAL GEOMETRY 62.3 (2019): 649-661.