A Model for the Optimal Management of Inflation

Federico S, Ferrari G, Schuhmann P (2019) Center for Mathematical Economics Working Papers; 624.
Bielefeld: Center for Mathematical Economics.

Diskussionspapier | Veröffentlicht| Englisch
 
Download
OA 518.58 KB
Autor/in
Abstract / Bemerkung
Consider a central bank that can adjust the inflation rate by increasing and decreasing the level of the key interest rate. Each intervention gives rise to proportional costs, and the central bank faces also a running penalty, e.g., due to misaligned levels of inflation and interest rate. We model the resulting minimization problem as a Markovian degenerate two-dimensional bounded-variation stochastic control problem. Its characteristic is that the mean-reversion level of the diffusive inflation rate is an affine function of the purely controlled interest rate's current value. By relying on a combination of techniques from viscosity theory and free-boundary analysis, we provide the structure of the value function and we show that it satisfies a second-order smooth-fit principle. Such a regularity is then exploited in order to determine a system of functional equations solved by the two monotone curves that split the control problem's state space in three connected regions.
Stichworte
singular stochastic control; Dynkin game; viscosity solution; free boundary; smooth-fit; inflation rate; interest rate
Erscheinungsjahr
2019
Band
624
ISSN
0931-6558
Page URI
https://pub.uni-bielefeld.de/record/2937637

Zitieren

Federico S, Ferrari G, Schuhmann P. A Model for the Optimal Management of Inflation. Center for Mathematical Economics Working Papers. Vol 624. Bielefeld: Center for Mathematical Economics; 2019.
Federico, S., Ferrari, G., & Schuhmann, P. (2019). A Model for the Optimal Management of Inflation (Center for Mathematical Economics Working Papers, 624). Bielefeld: Center for Mathematical Economics.
Federico, S., Ferrari, G., and Schuhmann, P. (2019). A Model for the Optimal Management of Inflation. Center for Mathematical Economics Working Papers, 624, Bielefeld: Center for Mathematical Economics.
Federico, S., Ferrari, G., & Schuhmann, P., 2019. A Model for the Optimal Management of Inflation, Center for Mathematical Economics Working Papers, no.624, Bielefeld: Center for Mathematical Economics.
S. Federico, G. Ferrari, and P. Schuhmann, A Model for the Optimal Management of Inflation, Center for Mathematical Economics Working Papers, vol. 624, Bielefeld: Center for Mathematical Economics, 2019.
Federico, S., Ferrari, G., Schuhmann, P.: A Model for the Optimal Management of Inflation. Center for Mathematical Economics Working Papers, 624. Center for Mathematical Economics, Bielefeld (2019).
Federico, Salvatore, Ferrari, Giorgio, and Schuhmann, Patrick. A Model for the Optimal Management of Inflation. Bielefeld: Center for Mathematical Economics, 2019. Center for Mathematical Economics Working Papers. 624.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-10-07T08:47:35Z
MD5 Prüfsumme
89dcf0e6c137f3f6262c150380f5911c

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar