A Model for the Optimal Management of Inflation
Federico S, Ferrari G, Schuhmann P (2019) Center for Mathematical Economics Working Papers; 624.
Bielefeld: Center for Mathematical Economics.
Diskussionspapier
| Veröffentlicht | Englisch
Download
IMW_working_paper_624_neu.pdf
518.58 KB
Autor*in
Federico, Salvatore;
Ferrari, GiorgioUniBi;
Schuhmann, PatrickUniBi
Abstract / Bemerkung
Consider a central bank that can adjust the inflation rate by increasing and decreasing
the level of the key interest rate. Each intervention gives rise to proportional costs,
and the central bank faces also a running penalty, e.g., due to misaligned levels of inflation
and interest rate. We model the resulting minimization problem as a Markovian degenerate
two-dimensional bounded-variation stochastic control problem. Its characteristic is that the
mean-reversion level of the diffusive inflation rate is an affine function of the purely controlled
interest rate's current value. By relying on a combination of techniques from viscosity theory
and free-boundary analysis, we provide the structure of the value function and we show that
it satisfies a second-order smooth-fit principle. Such a regularity is then exploited in order to
determine a system of functional equations solved by the two monotone curves that split the
control problem's state space in three connected regions.
Stichworte
singular stochastic control;
Dynkin game;
viscosity solution;
free boundary;
smooth-fit;
inflation rate;
interest rate
Erscheinungsjahr
2019
Serientitel
Center for Mathematical Economics Working Papers
Band
624
ISSN
0931-6558
Page URI
https://pub.uni-bielefeld.de/record/2937637
Zitieren
Federico S, Ferrari G, Schuhmann P. A Model for the Optimal Management of Inflation. Center for Mathematical Economics Working Papers. Vol 624. Bielefeld: Center for Mathematical Economics; 2019.
Federico, S., Ferrari, G., & Schuhmann, P. (2019). A Model for the Optimal Management of Inflation (Center for Mathematical Economics Working Papers, 624). Bielefeld: Center for Mathematical Economics.
Federico, Salvatore, Ferrari, Giorgio, and Schuhmann, Patrick. 2019. A Model for the Optimal Management of Inflation. Vol. 624. Center for Mathematical Economics Working Papers. Bielefeld: Center for Mathematical Economics.
Federico, S., Ferrari, G., and Schuhmann, P. (2019). A Model for the Optimal Management of Inflation. Center for Mathematical Economics Working Papers, 624, Bielefeld: Center for Mathematical Economics.
Federico, S., Ferrari, G., & Schuhmann, P., 2019. A Model for the Optimal Management of Inflation, Center for Mathematical Economics Working Papers, no.624, Bielefeld: Center for Mathematical Economics.
S. Federico, G. Ferrari, and P. Schuhmann, A Model for the Optimal Management of Inflation, Center for Mathematical Economics Working Papers, vol. 624, Bielefeld: Center for Mathematical Economics, 2019.
Federico, S., Ferrari, G., Schuhmann, P.: A Model for the Optimal Management of Inflation. Center for Mathematical Economics Working Papers, 624. Center for Mathematical Economics, Bielefeld (2019).
Federico, Salvatore, Ferrari, Giorgio, and Schuhmann, Patrick. A Model for the Optimal Management of Inflation. Bielefeld: Center for Mathematical Economics, 2019. Center for Mathematical Economics Working Papers. 624.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Name
IMW_working_paper_624_neu.pdf
518.58 KB
Access Level
Open Access
Zuletzt Hochgeladen
2019-10-07T08:47:35Z
MD5 Prüfsumme
89dcf0e6c137f3f6262c150380f5911c