Finiteness properties of split extensions of linear groups

Santos Rego Y (2019)
Bielefeld: Universität Bielefeld.

Bielefelder E-Dissertation | Englisch
 
Download
OA 1.12 MB
Autor*in
Santos Rego, Yuri
Gutachter*in / Betreuer*in
Abstract / Bemerkung
We investigate presentation problems for certain split extensions of discrete matrix groups. In the soluble front, we classify finitely presented Abels groups over arbitrary commutative rings R in terms of their ranks and the Borel subgroup of SL(2,R). In the classical set-up we prove that, under mild conditions, a parabolic subgroup of a classical group is relatively finitely presented with respect to its extended Levi factor. This yields, in particular, a partial classification of finitely presented S-arithmetic parabolic groups. Furthermore, we consider higher dimensional finiteness properties and establish an upper bound on the finiteness length of groups that admit certain representations with soluble image.
Jahr
2019
Page URI
https://pub.uni-bielefeld.de/record/2937569

Zitieren

Santos Rego Y. Finiteness properties of split extensions of linear groups. Bielefeld: Universität Bielefeld; 2019.
Santos Rego, Y. (2019). Finiteness properties of split extensions of linear groups. Bielefeld: Universität Bielefeld. doi:10.4119/unibi/2937569
Santos Rego, Yuri. 2019. Finiteness properties of split extensions of linear groups. Bielefeld: Universität Bielefeld.
Santos Rego, Y. (2019). Finiteness properties of split extensions of linear groups. Bielefeld: Universität Bielefeld.
Santos Rego, Y., 2019. Finiteness properties of split extensions of linear groups, Bielefeld: Universität Bielefeld.
Y. Santos Rego, Finiteness properties of split extensions of linear groups, Bielefeld: Universität Bielefeld, 2019.
Santos Rego, Y.: Finiteness properties of split extensions of linear groups. Universität Bielefeld, Bielefeld (2019).
Santos Rego, Yuri. Finiteness properties of split extensions of linear groups. Bielefeld: Universität Bielefeld, 2019.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International (CC BY-NC-ND 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-24T21:03:22Z
MD5 Prüfsumme
595a4b8fecff5a9ad5b5375a9a301b17


Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar