Convex Semigroups on Banach Lattices
Denk R, Kupper M, Nendel M (2019) Center for Mathematical Economics Working Papers; 622.
Bielefeld: Center for Mathematical Economics.
Diskussionspapier
| Veröffentlicht | Englisch
Download
IMW_working_paper_622.pdf
501.41 KB
Autor*in
Denk, Robert;
Kupper, Michael;
Nendel, MaxUniBi
Abstract / Bemerkung
In this paper, we investigate convex semigroups on Banach lattices.
First, we consider the case, where the Banach lattice is $\sigma$-Dedekind complete and
satisfies a monotone convergence property, having L$^p$--spaces in mind as a typical
application. Second, we consider monotone convex semigroups on a Banach lattice,
which is a Riesz subspace of a $\sigma$-Dedekind complete Banach lattice, where we consider
the space of bounded uniformly continuous functions as a typical example. In
both cases, we prove the invariance of a suitable domain for the generator under
the semigroup. As a consequence, we obtain the uniqueness of the semigroup in
terms of the generator. The results are discussed in several examples such as semilinear
heat equations (g-expectation), nonlinear integro-differential equations (uncertain
compound Poisson processes), fully nonlinear partial differential equations (uncertain
shift semigroup and G-expectation).
AMS 2010 Subject Classifcation: 47H20; 35A02; 35A09
AMS 2010 Subject Classifcation: 47H20; 35A02; 35A09
Stichworte
Convex semigroup;
nonlinear Cauchy problem;
fully nonlinear PDE;
well-posedness and uniqueness;
Hamilton-Jacobi-Bellman equations
Erscheinungsjahr
2019
Serientitel
Center for Mathematical Economics Working Papers
Band
622
Seite(n)
36
Urheberrecht / Lizenzen
ISSN
0931-6558
Page URI
https://pub.uni-bielefeld.de/record/2937258
Zitieren
Denk R, Kupper M, Nendel M. Convex Semigroups on Banach Lattices. Center for Mathematical Economics Working Papers. Vol 622. Bielefeld: Center for Mathematical Economics; 2019.
Denk, R., Kupper, M., & Nendel, M. (2019). Convex Semigroups on Banach Lattices (Center for Mathematical Economics Working Papers, 622). Bielefeld: Center for Mathematical Economics.
Denk, Robert, Kupper, Michael, and Nendel, Max. 2019. Convex Semigroups on Banach Lattices. Vol. 622. Center for Mathematical Economics Working Papers. Bielefeld: Center for Mathematical Economics.
Denk, R., Kupper, M., and Nendel, M. (2019). Convex Semigroups on Banach Lattices. Center for Mathematical Economics Working Papers, 622, Bielefeld: Center for Mathematical Economics.
Denk, R., Kupper, M., & Nendel, M., 2019. Convex Semigroups on Banach Lattices, Center for Mathematical Economics Working Papers, no.622, Bielefeld: Center for Mathematical Economics.
R. Denk, M. Kupper, and M. Nendel, Convex Semigroups on Banach Lattices, Center for Mathematical Economics Working Papers, vol. 622, Bielefeld: Center for Mathematical Economics, 2019.
Denk, R., Kupper, M., Nendel, M.: Convex Semigroups on Banach Lattices. Center for Mathematical Economics Working Papers, 622. Center for Mathematical Economics, Bielefeld (2019).
Denk, Robert, Kupper, Michael, and Nendel, Max. Convex Semigroups on Banach Lattices. Bielefeld: Center for Mathematical Economics, 2019. Center for Mathematical Economics Working Papers. 622.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Name
IMW_working_paper_622.pdf
501.41 KB
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-10T09:03:42Z
MD5 Prüfsumme
9e06bd6b1d0e9597c6c2a3456441760d