Semipolar Sets and Intrinsic Hausdorff Measure

Hansen W, Netuka I (2019)
Potential Analysis 51(1): 49-69.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Autor/in
;
Abstract / Bemerkung
Given a Green function G on a locally compact space X with countable base, a Borel set A in X is called G-semipolar, if there is no measure nu not equal 0 supported by A such that G nu:=integral G(.,y)d nu(y) is a continuous real function on X. Introducing an intrinsic Hausdorff measurem(G) using G-balls B(x, rho) := {y is an element of X : G(x, y) > 1/rho}, it is shown that every set A in X with mG(A)
Stichworte
Heat equation; Metric measure space; Heat kernel; Balayage space; Green; function; Hausdorff measure; Semipolar set; Space-time process
Erscheinungsjahr
2019
Zeitschriftentitel
Potential Analysis
Band
51
Ausgabe
1
Seite(n)
49-69
ISSN
0926-2601
eISSN
1572-929X
Page URI
https://pub.uni-bielefeld.de/record/2936945

Zitieren

Hansen W, Netuka I. Semipolar Sets and Intrinsic Hausdorff Measure. Potential Analysis. 2019;51(1):49-69.
Hansen, W., & Netuka, I. (2019). Semipolar Sets and Intrinsic Hausdorff Measure. Potential Analysis, 51(1), 49-69. doi:10.1007/s11118-018-9702-x
Hansen, W., and Netuka, I. (2019). Semipolar Sets and Intrinsic Hausdorff Measure. Potential Analysis 51, 49-69.
Hansen, W., & Netuka, I., 2019. Semipolar Sets and Intrinsic Hausdorff Measure. Potential Analysis, 51(1), p 49-69.
W. Hansen and I. Netuka, “Semipolar Sets and Intrinsic Hausdorff Measure”, Potential Analysis, vol. 51, 2019, pp. 49-69.
Hansen, W., Netuka, I.: Semipolar Sets and Intrinsic Hausdorff Measure. Potential Analysis. 51, 49-69 (2019).
Hansen, Wolfhard, and Netuka, Ivan. “Semipolar Sets and Intrinsic Hausdorff Measure”. Potential Analysis 51.1 (2019): 49-69.