Chiral crossover in QCD at zero and non-zero chemical potentials
Bazavov, A.
Bazavov
A.
Ding, H-T
Ding
H-T
Hegde, R.
Hegde
R.
Kaczmarek, Olaf
Kaczmarek
Olaf
Karsch, Frithjof
Karsch
Frithjof
Karthik, N.
Karthik
N.
Laermann, Edwin
Laermann
Edwin
Lahiri, Anirban
Lahiri
Anirban
Larsen, R.
Larsen
R.
Li, S-T
Li
S-T
Mukherjee, Swagato
Mukherjee
Swagato
Ohno, H.
Ohno
H.
Petreczky, R.
Petreczky
R.
Sandmeyer, Hauke
Sandmeyer
Hauke
Schmidt, Christian
Schmidt
Christian
Sharma, S.
Sharma
S.
Steinbrecher, R.
Steinbrecher
R.
We present results for pseudo-critical temperatures of QCD chiral crossovers at zero and non-zero values of baryon (B), strangeness (S), electric charge (Q), and isospin (I) chemical potentials mu(X=B,Q,S,I). The results were obtained using lattice QCD calculations carried out with two degenerate up and down dynamical quarks and a dynamical strange quark, with quark masses corresponding to physical values of pion and kaon masses in the continuum limit. By parameterizing pseudo-critical temperatures as T-c(mu(x)) = T-c(0)[1-kappa(X)(2)(mu(X)/T-c(0))(2) - kappa(X)(4)(mu(X)/T-c(0))(4)], we determined kappa(X)(2) and kappa(X)(4) from Taylor expansions of chiral observables in mu(X). We obtained a precise result for T-c(0) = (156.5 +/- 1.5) MeV. For analogous thermal conditions at the chemical freeze-out of relativistic heavy-ion collisions, i.e., mu(S)(T, mu(B)) and mu(Q)(T, mu(B)) fixed from strangeness-neutrality and isospin-imbalance, we found kappa(B)(2) = 0.012(4) and kappa(B)(4) = 0.000(4). For mu(B) less than or similar to 300 MeV, the chemical freeze-out takes place in the vicinity of the QCD phase 4 boundary, which coincides with the lines of constant energy density of 0.42(6) GeV/fm(3) and constant entropy density of 3.7(5) fm(-3). (C) 2019 The Author(s). Published by Elsevier B.V.
795
15-21
15-21
Elsevier
2019