Evidence for the Rhythmic Perceptual Sampling of Auditory Scenes

Kayser C (2019)
Frontiers in Human Neuroscience 2019(13): 249.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
OA 2.05 MB
Abstract / Bemerkung
Converging results suggest that perception is controlled by rhythmic processes in the brain. In the auditory domain, neuroimaging studies show that the perception of sounds is shaped by rhythmic activity prior to the stimulus, and electrophysiological recordings have linked delta and theta band activity to the functioning of individual neurons. These results have promoted theories of rhythmic modes of listening and generally suggest that the perceptually relevant encoding of acoustic information is structured by rhythmic processes along auditory pathways. A prediction from this perspective—which so far has not been tested—is that such rhythmic processes also shape how acoustic information is combined over time to judge extended soundscapes. The present study was designed to directly test this prediction. Human participants judged the overall change in perceived frequency content in temporally extended (1.2–1.8 s) soundscapes, while the perceptual use of the available sensory evidence was quantified using psychophysical reverse correlation. Model-based analysis of individual participant’s perceptual weights revealed a rich temporal structure, including linear trends, a U-shaped profile tied to the overall stimulus duration, and importantly, rhythmic components at the time scale of 1–2 Hz. The collective evidence found here across four versions of the experiment supports the notion that rhythmic processes operating on the delta time scale structure how perception samples temporally extended acoustic scenes.
Frontiers in Human Neuroscience
Page URI


Kayser C. Evidence for the Rhythmic Perceptual Sampling of Auditory Scenes. Frontiers in Human Neuroscience. 2019;2019(13): 249.
Kayser, C. (2019). Evidence for the Rhythmic Perceptual Sampling of Auditory Scenes. Frontiers in Human Neuroscience, 2019(13), 249. doi:10.3389/fnhum.2019.00249
Kayser, Christoph. 2019. “Evidence for the Rhythmic Perceptual Sampling of Auditory Scenes”. Frontiers in Human Neuroscience 2019 (13): 249.
Kayser, C. (2019). Evidence for the Rhythmic Perceptual Sampling of Auditory Scenes. Frontiers in Human Neuroscience 2019:249.
Kayser, C., 2019. Evidence for the Rhythmic Perceptual Sampling of Auditory Scenes. Frontiers in Human Neuroscience, 2019(13): 249.
C. Kayser, “Evidence for the Rhythmic Perceptual Sampling of Auditory Scenes”, Frontiers in Human Neuroscience, vol. 2019, 2019, : 249.
Kayser, C.: Evidence for the Rhythmic Perceptual Sampling of Auditory Scenes. Frontiers in Human Neuroscience. 2019, : 249 (2019).
Kayser, Christoph. “Evidence for the Rhythmic Perceptual Sampling of Auditory Scenes”. Frontiers in Human Neuroscience 2019.13 (2019): 249.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

Link(s) zu Volltext(en)
Access Level
OA Open Access

67 References

Daten bereitgestellt von Europe PubMed Central.

Expectancy, attention, and time.
Barnes R, Jones MR., Cogn Psychol 41(3), 2000
PMID: 11032658
The Psychophysics Toolbox.
Brainard DH., Spat Vis 10(4), 1997
PMID: 9176952
Multimodel inference: understanding AIC and BIC in model selection
Burnham K., Anderson D.., 2004
The phase of ongoing EEG oscillations predicts visual perception.
Busch NA, Dubois J, VanRullen R., J. Neurosci. 29(24), 2009
PMID: 19535598
Spontaneous EEG oscillations reveal periodic sampling of visual attention.
Busch NA, VanRullen R., Proc. Natl. Acad. Sci. U.S.A. 107(37), 2010
PMID: 20805482
Accurate statistical tests for smooth classification images.
Chauvin A, Worsley KJ, Schyns PG, Arguin M, Gosselin F., J Vis 5(9), 2005
PMID: 16356076
Low-Frequency Cortical Entrainment to Speech Reflects Phoneme-Level Processing.
Di Liberto GM, O'Sullivan JA, Lalor EC., Curr. Biol. 25(19), 2015
PMID: 26412129
Computational Precision of Mental Inference as Critical Source of Human Choice Suboptimality.
Drugowitsch J, Wyart V, Devauchelle AD, Koechlin E., Neuron 92(6), 2016
PMID: 27916454
Classification images: a tool to analyze visual strategies.
Eckstein MP, Ahumada AJ Jr, Eckstein MP., J Vis 2(1), 2002
PMID: 12678601
Ready, set, reset: stimulus-locked periodicity in behavioral performance demonstrates the consequences of cross-sensory phase reset.
Fiebelkorn IC, Foxe JJ, Butler JS, Mercier MR, Snyder AC, Molholm S., J. Neurosci. 31(27), 2011
PMID: 21734288
Understanding predictive information criteria for Bayesian models
Gelman A., Hwang J., Vehtari A.., 2014
A Corticothalamic Circuit for Dynamic Switching between Feature Detection and Discrimination.
Guo W, Clause AR, Barth-Maron A, Polley DB., Neuron 95(1), 2017
PMID: 28625486
Rhythmic facilitation of sensory processing: A critical review.
Haegens S, Zion Golumbic E., Neurosci Biobehav Rev 86(), 2017
PMID: 29223770
The rhythmic nature of visual perception.
Helfrich RF., J. Neurophysiol. 119(4), 2017
PMID: 29357470
Entrained neural oscillations in multiple frequency bands comodulate behavior.
Henry MJ, Herrmann B, Obleser J., Proc. Natl. Acad. Sci. U.S.A. 111(41), 2014
PMID: 25267634
Neural Microstates Govern Perception of Auditory Input without Rhythmic Structure.
Henry MJ, Herrmann B, Obleser J., J. Neurosci. 36(3), 2016
PMID: 26791216
Frequency modulation entrains slow neural oscillations and optimizes human listening behavior.
Henry MJ, Obleser J., Proc. Natl. Acad. Sci. U.S.A. 109(49), 2012
PMID: 23151506
Auditory Sensitivity and Decision Criteria Oscillate at Different Frequencies Separately for the Two Ears.
Ho HT, Leung J, Burr DC, Alais D, Morrone MC., Curr. Biol. 27(23), 2017
PMID: 29153327
Bias of the corrected AIC criterion for underfitted regression and time series models
Hurvich C., Tsai C.-L.., 1991
Prestimulus influences on auditory perception from sensory representations and decision processes.
Kayser SJ, McNair SW, Kayser C., Proc. Natl. Acad. Sci. U.S.A. 113(17), 2016
PMID: 27071110
Rhythmic auditory cortex activity at multiple timescales shapes stimulus-response gain and background firing.
Kayser C, Wilson C, Safaai H, Sakata S, Panzeri S., J. Neurosci. 35(20), 2015
PMID: 25995464
Global dynamics of selective attention and its lapses in primary auditory cortex.
Lakatos P, Barczak A, Neymotin SA, McGinnis T, Ross D, Javitt DC, O'Connell MN., Nat. Neurosci. 19(12), 2016
PMID: 27618311
The spectrotemporal filter mechanism of auditory selective attention.
Lakatos P, Musacchia G, O'Connel MN, Falchier AY, Javitt DC, Schroeder CE., Neuron 77(4), 2013
PMID: 23439126
An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex.
Lakatos P, Shah AS, Knuth KH, Ulbert I, Karmos G, Schroeder CE., J. Neurophysiol. 94(3), 2005
PMID: 15901760
Attention samples stimuli rhythmically.
Landau AN, Fries P., Curr. Biol. 22(11), 2012
PMID: 22633805
High-dimensional bayesian regularised regression with the bayesreg package
Makalic E., Schmidt D.., 2016

Marmarelis V.., 1978
Consistent pre-stimulus influences on auditory perception across the lifespan.
McNair SW, Kayser SJ, Kayser C., Neuroimage 186(), 2018
PMID: 30391564
The speed and accuracy of perceptual decisions in a random-tone pitch task.
Mulder MJ, Keuken MC, van Maanen L, Boekel W, Forstmann BU, Wagenmakers EJ., Atten Percept Psychophys 75(5), 2013
PMID: 23572205
Layer specific sharpening of frequency tuning by selective attention in primary auditory cortex.
O'Connell MN, Barczak A, Schroeder CE, Lakatos P., J. Neurosci. 34(49), 2014
PMID: 25471586
Psychophysical reverse correlation reflects both sensory and decision-making processes.
Okazawa G, Sha L, Purcell BA, Kiani R., Nat Commun 9(1), 2018
PMID: 30154467
The Importance of Falsification in Computational Cognitive Modeling.
Palminteri S, Wyart V, Koechlin E., Trends Cogn. Sci. (Regul. Ed.) 21(6), 2017
PMID: 28476348
Bayesian model selection for group studies - revisited.
Rigoux L, Stephan KE, Friston KJ, Daunizeau J., Neuroimage 84(), 2013
PMID: 24018303
Spontaneous fluctuations in posterior alpha-band EEG activity reflect variability in excitability of human visual areas.
Romei V, Brodbeck V, Michel C, Amedi A, Pascual-Leone A, Thut G., Cereb. Cortex 18(9), 2007
PMID: 18093905
Temporal information in speech: acoustic, auditory and linguistic aspects.
Rosen S., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 336(1278), 1992
PMID: 1354376
Low-frequency neuronal oscillations as instruments of sensory selection.
Schroeder CE, Lakatos P., Trends Neurosci. 32(1), 2008
PMID: 19012975
Behavioral oscillations in attention: rhythmic α pulses mediated through θ band.
Song K, Meng M, Chen L, Zhou K, Luo H., J. Neurosci. 34(14), 2014
PMID: 24695703
Alpha phase determines successful lexical decision in noise.
Strauß A, Henry MJ, Scharinger M, Obleser J., J. Neurosci. 35(7), 2015
PMID: 25698760
Oscillatory phase shapes syllable perception.
ten Oever S, Sack AT., Proc. Natl. Acad. Sci. U.S.A. 112(52), 2015
PMID: 26668393
Perceptual Cycles.
VanRullen R., Trends Cogn. Sci. (Regul. Ed.) 20(10), 2016
PMID: 27567317
The psychophysics of brain rhythms.
Vanrullen R, Dubois J., Front Psychol 2(), 2011
PMID: 21904532
Perceptual echoes at 10 Hz in the human brain.
VanRullen R, Macdonald JS., Curr. Biol. 22(11), 2012
PMID: 22560609
On the cyclic nature of perception in vision versus audition.
VanRullen R, Zoefel B, Ilhan B., Philos. Trans. R. Soc. Lond., B, Biol. Sci. 369(1641), 2014
PMID: 24639585
Oscillatory mechanisms in human reaction times?
Vorberg D, Schwarz W., Naturwissenschaften 74(9), 1987
PMID: 3683590
Transcranial alternating current stimulation with speech envelopes modulates speech comprehension.
Wilsch A, Neuling T, Obleser J, Herrmann CS., Neuroimage 172(), 2018
PMID: 29355765
Spatiotemporal dynamics of auditory attention synchronize with speech.
Wostmann M, Herrmann B, Maess B, Obleser J., Proc. Natl. Acad. Sci. U.S.A. 113(14), 2016
PMID: 27001861
Rhythmic fluctuations in evidence accumulation during decision making in the human brain.
Wyart V, de Gardelle V, Scholl J, Summerfield C., Neuron 76(4), 2012
PMID: 23177968
The Encoding of Speech Sounds in the Superior Temporal Gyrus.
Yi HG, Leonard MK, Chang EF., Neuron 102(6), 2019
PMID: 31220442
How to test for phasic modulation of neural and behavioural responses
Zoefel B, Davis MH, Valente G, Riecke L., 2019
PMID: PPR67164
The ability of the auditory system to cope with temporal subsampling depends on the hierarchical level of processing.
Zoefel B, Reddy Pasham N, Bruers S, VanRullen R., Neuroreport 26(13), 2015
PMID: 26164609
The Role of High-Level Processes for Oscillatory Phase Entrainment to Speech Sound.
Zoefel B, VanRullen R., Front Hum Neurosci 9(), 2015
PMID: 26696863

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 31396064
PubMed | Europe PMC

Preprint: 10.1101/618652

Suchen in

Google Scholar