Submodular Mean Field Games. Existence and Approximation of Solutions
Dianetti J, Ferrari G, Fischer M, Nendel M (2019) Center for Mathematical Economics Working Papers; 621.
Bielefeld: Center for Mathematical Economics.
Diskussionspapier
| Veröffentlicht | Englisch
Download
IMW_working_paper_621.pdf
465.58 KB
Autor*in
Abstract / Bemerkung
We study mean field games with scalar Itô-type dynamics and costs that are
submodular with respect to a suitable order relation on the state and measure space. The
submodularity assumption has a number of interesting consequences. Firstly, it allows us to
prove existence of solutions via an application of Tarski's fixed point theorem, covering cases
with discontinuous dependence on the measure variable. Secondly, it ensures that the set
of solutions enjoys a lattice structure: in particular, there exist a minimal and a maximal
solution. Thirdly, it guarantees that those two solutions can be obtained through a simple
learning procedure based on the iterations of the best-response-map. The mean field game
is first defined over ordinary stochastic controls, then extended to relaxed controls. Our
approach allows also to treat a class of submodular mean field games with common noise in
which the representative player at equilibrium interacts with the (conditional) mean of its
state's distribution.
Stichworte
Mean field games;
submodular cost function;
complete lattice;
first order stochastic dominance;
Tarski's fixed point theorem.
Erscheinungsjahr
2019
Serientitel
Center for Mathematical Economics Working Papers
Band
621
ISSN
0931-6558
Page URI
https://pub.uni-bielefeld.de/record/2936699
Zitieren
Dianetti J, Ferrari G, Fischer M, Nendel M. Submodular Mean Field Games. Existence and Approximation of Solutions. Center for Mathematical Economics Working Papers. Vol 621. Bielefeld: Center for Mathematical Economics; 2019.
Dianetti, J., Ferrari, G., Fischer, M., & Nendel, M. (2019). Submodular Mean Field Games. Existence and Approximation of Solutions (Center for Mathematical Economics Working Papers, 621). Bielefeld: Center for Mathematical Economics.
Dianetti, Jodi, Ferrari, Giorgio, Fischer, Markus, and Nendel, Max. 2019. Submodular Mean Field Games. Existence and Approximation of Solutions. Vol. 621. Center for Mathematical Economics Working Papers. Bielefeld: Center for Mathematical Economics.
Dianetti, J., Ferrari, G., Fischer, M., and Nendel, M. (2019). Submodular Mean Field Games. Existence and Approximation of Solutions. Center for Mathematical Economics Working Papers, 621, Bielefeld: Center for Mathematical Economics.
Dianetti, J., et al., 2019. Submodular Mean Field Games. Existence and Approximation of Solutions, Center for Mathematical Economics Working Papers, no.621, Bielefeld: Center for Mathematical Economics.
J. Dianetti, et al., Submodular Mean Field Games. Existence and Approximation of Solutions, Center for Mathematical Economics Working Papers, vol. 621, Bielefeld: Center for Mathematical Economics, 2019.
Dianetti, J., Ferrari, G., Fischer, M., Nendel, M.: Submodular Mean Field Games. Existence and Approximation of Solutions. Center for Mathematical Economics Working Papers, 621. Center for Mathematical Economics, Bielefeld (2019).
Dianetti, Jodi, Ferrari, Giorgio, Fischer, Markus, and Nendel, Max. Submodular Mean Field Games. Existence and Approximation of Solutions. Bielefeld: Center for Mathematical Economics, 2019. Center for Mathematical Economics Working Papers. 621.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Name
IMW_working_paper_621.pdf
465.58 KB
Access Level
Open Access
Zuletzt Hochgeladen
2019-07-26T08:50:03Z
MD5 Prüfsumme
28b0229ee3101ca1992a5d7e44d26266