Benson, D., Iyengar, S. B., Krause, H., & Pevtsova, J. (2019). Local duality for the singularity category of a finite dimensional Gorenstein algebra. *arXiv:1905.01506*

","default":"Benson D, Iyengar SB, Krause H, Pevtsova J (2019) Local duality for the singularity category of a finite dimensional Gorenstein algebra.

arXiv:1905.01506.","mla":"Benson, Dave, Iyengar, Srikanth B., Krause, Henning, and Pevtsova, Julia. “Local duality for the singularity category of a finite dimensional Gorenstein algebra”.

Benson, Dave, Iyengar, Srikanth B., Krause, Henning, and Pevtsova, Julia. 2019. “Local duality for the singularity category of a finite dimensional Gorenstein algebra”. *arXiv:1905.01506*.

","frontiers":"Benson, D., Iyengar, S. B., Krause, H., and Pevtsova, J. (2019). Local duality for the singularity category of a finite dimensional Gorenstein algebra. Benson, D., Iyengar, S.B., Krause, H. & Pevtsova, J. (2019). Local duality for the singularity category of a finite dimensional Gorenstein algebra. *arXiv:1905.01506*.

"},"abstract":[{"lang":"eng","text":"A duality theorem for the singularity category of a finite dimensional\r\nGorenstein algebra is proved. It complements a duality on the category of\r\nperfect complexes, discovered by Happel. One of its consequences is an analogue\r\nof Serre duality, and the existence of Auslander-Reiten triangles for the\r\n$\\mathfrak{p}$-local and $\\mathfrak{p}$-torsion subcategories of the derived\r\ncategory, for each homogeneous prime ideal $\\mathfrak{p}$ arising from the\r\naction of a commutative ring via Hochschild cohomology."}],"department":[{"_id":"10020"}],"date_created":"2019-07-15T11:34:46Z","type":"preprint","title":"Local duality for the singularity category of a finite dimensional Gorenstein algebra","status":"public","year":"2019","external_id":{"arxiv":["1905.01506"]}}]