From integrable to chaotic systems: Universal local statistics of Lyapunov exponents
Akemann G, Burda Z, Kieburg M (2019)
EPL 126(4): 40001.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Einrichtung
Abstract / Bemerkung
Systems where time evolution follows a multiplicative process are ubiquitous in physics. We study a toy model for such systems where each time step is given by multiplication with an independent random N x N matrix with complex Gaussian elements, the complex Ginibre ensemble. This model allows to explicitly compute the Lyapunov exponents and local correlations amongst them, when the number of factors M becomes large. While the smallest eigenvalues always remain deterministic, which is also the case for many chaotic quantum systems, we identify a critical double scaling limit N similar to M for the rest of the spectrum. It interpolates between the known deterministic behaviour of the Lyapunov exponents for M >> N (or N fixed) and universal random matrix statistics for M << N (or M fixed), characterising chaotic behaviour. After unfolding, this agrees with Dyson's Brownian motion starting from equidistant positions in the bulk and at the soft edge of the spectrum. This universality statement is further corroborated by numerical experiments, multiplying different kinds of random matrices. It leads us to conjecture a much wider applicability in complex systems, that display a transition from deterministic to chaotic behaviour. Copyright (C) EPLA, 2019
Erscheinungsjahr
2019
Zeitschriftentitel
EPL
Band
126
Ausgabe
4
Art.-Nr.
40001
ISSN
0295-5075
eISSN
1286-4854
Page URI
https://pub.uni-bielefeld.de/record/2936344
Zitieren
Akemann G, Burda Z, Kieburg M. From integrable to chaotic systems: Universal local statistics of Lyapunov exponents. EPL. 2019;126(4): 40001.
Akemann, G., Burda, Z., & Kieburg, M. (2019). From integrable to chaotic systems: Universal local statistics of Lyapunov exponents. EPL, 126(4), 40001. doi:10.1209/0295-5075/126/40001
Akemann, Gernot, Burda, Zdzislaw, and Kieburg, Mario. 2019. “From integrable to chaotic systems: Universal local statistics of Lyapunov exponents”. EPL 126 (4): 40001.
Akemann, G., Burda, Z., and Kieburg, M. (2019). From integrable to chaotic systems: Universal local statistics of Lyapunov exponents. EPL 126:40001.
Akemann, G., Burda, Z., & Kieburg, M., 2019. From integrable to chaotic systems: Universal local statistics of Lyapunov exponents. EPL, 126(4): 40001.
G. Akemann, Z. Burda, and M. Kieburg, “From integrable to chaotic systems: Universal local statistics of Lyapunov exponents”, EPL, vol. 126, 2019, : 40001.
Akemann, G., Burda, Z., Kieburg, M.: From integrable to chaotic systems: Universal local statistics of Lyapunov exponents. EPL. 126, : 40001 (2019).
Akemann, Gernot, Burda, Zdzislaw, and Kieburg, Mario. “From integrable to chaotic systems: Universal local statistics of Lyapunov exponents”. EPL 126.4 (2019): 40001.
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
arXiv: 1809.05905
Suchen in