Characterization of genes and alleles involved in the control of flowering time in grapevine.

Kamal N, Ochßner I, Schwandner A, Viehöver P, Hausmann L, Töpfer R, Weisshaar B, Holtgräwe D (2019)
PLoS One 14(7): e0214703.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
OA 4.37 MB
Kamal, NadiaUniBi; Ochßner, Iris; Schwandner, Anna; Viehöver, PriscaUniBi; Hausmann, Ludger; Töpfer, Reinhard; Weisshaar, BerndUniBi ; Holtgräwe, DanielaUniBi
Abstract / Bemerkung
Grapevine (Vitis vinifera) is one of the most important perennial crop plants in worldwide. Understanding of developmental processes like flowering, which impact quality and quantity of yield in this species is therefore of high interest. This gets even more important when considering some of the expected consequences of climate change. Earlier bud burst and flowering, for example, may result in yield loss due to spring frost. Berry ripening under higher temperatures will impact wine quality. Knowledge of interactions between a genotype or allele combination and the environment can be used for the breeding of genotypes that are better adapted to new climatic conditions. To this end, we have generated a list of more than 500 candidate genes that may play a role in the timing of flowering. The grapevine genome was exploited for flowering time control gene homologs on the basis of functional data from model organisms like A. thaliana. In a previous study, a mapping population derived from early flowering GF.GA-47-42 and late flowering ‘Villard Blanc’ was analyzed for flowering time QTLs. In a second step we have now established a workflow combining amplicon sequencing and bioinformatics to follow alleles of selected candidate genes in the F1 individuals and the parental genotypes. Allele combinations of these genes in individuals of the mapping population were correlated with early or late flowering phenotypes. Specific allele combinations of flowering time candidate genes within and outside of the QTL regions for flowering time on chromosome 1, 4, 14, 17, and 18 were found to be associated with an early flowering phenotype. In addition, expression of many of the flowering candidate genes was analyzed over consecutive stages of bud and inflorescence development indicating functional roles of these genes in the flowering control network.
PLoS One
Page URI


Kamal N, Ochßner I, Schwandner A, et al. Characterization of genes and alleles involved in the control of flowering time in grapevine. PLoS One. 2019;14(7): e0214703.
Kamal, N., Ochßner, I., Schwandner, A., Viehöver, P., Hausmann, L., Töpfer, R., Weisshaar, B., et al. (2019). Characterization of genes and alleles involved in the control of flowering time in grapevine. PLoS One, 14(7), e0214703. doi:10.1371/journal.pone.0214703
Kamal, Nadia, Ochßner, Iris, Schwandner, Anna, Viehöver, Prisca, Hausmann, Ludger, Töpfer, Reinhard, Weisshaar, Bernd, and Holtgräwe, Daniela. 2019. “Characterization of genes and alleles involved in the control of flowering time in grapevine.”. PLoS One 14 (7): e0214703.
Kamal, N., Ochßner, I., Schwandner, A., Viehöver, P., Hausmann, L., Töpfer, R., Weisshaar, B., and Holtgräwe, D. (2019). Characterization of genes and alleles involved in the control of flowering time in grapevine. PLoS One 14:e0214703.
Kamal, N., et al., 2019. Characterization of genes and alleles involved in the control of flowering time in grapevine. PLoS One, 14(7): e0214703.
N. Kamal, et al., “Characterization of genes and alleles involved in the control of flowering time in grapevine.”, PLoS One, vol. 14, 2019, : e0214703.
Kamal, N., Ochßner, I., Schwandner, A., Viehöver, P., Hausmann, L., Töpfer, R., Weisshaar, B., Holtgräwe, D.: Characterization of genes and alleles involved in the control of flowering time in grapevine. PLoS One. 14, : e0214703 (2019).
Kamal, Nadia, Ochßner, Iris, Schwandner, Anna, Viehöver, Prisca, Hausmann, Ludger, Töpfer, Reinhard, Weisshaar, Bernd, and Holtgräwe, Daniela. “Characterization of genes and alleles involved in the control of flowering time in grapevine.”. PLoS One 14.7 (2019): e0214703.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

Link(s) zu Volltext(en)
Access Level
OA Open Access

74 References

Daten bereitgestellt von Europe PubMed Central.

A molecular genetic perspective of reproductive development in grapevine.
Carmona MJ, Chaib J, Martinez-Zapater JM, Thomas MR., J. Exp. Bot. 59(10), 2008
PMID: 18596111
Towards the adaptation of grapevine varieties to climate change: QTLs and candidate genes for developmental stages.
Duchene E, Butterlin G, Dumas V, Merdinoglu D., Theor. Appl. Genet. 124(4), 2011
PMID: 22052019
Temperature desynchronizes sugar and organic acid metabolism in ripening grapevine fruits and remodels their transcriptome.
Rienth M, Torregrosa L, Sarah G, Ardisson M, Brillouet JM, Romieu C., BMC Plant Biol. 16(1), 2016
PMID: 27439426
The genetic basis of flowering responses to seasonal cues.
Andres F, Coupland G., Nat. Rev. Genet. 13(9), 2012
PMID: 22898651
Candidate gene association mapping of Arabidopsis flowering time.
Ehrenreich IM, Hanzawa Y, Chou L, Roe JL, Kover PX, Purugganan MD., Genetics 183(1), 2009
PMID: 19581446
The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla.
Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pe ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quetier F, Wincker P; French-Italian Public Consortium for Grapevine Genome Characterization., Nature 449(7161), 2007
PMID: 17721507
A high quality draft consensus sequence of the genome of a heterozygous grapevine variety.
Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, Fitzgerald LM, Vezzulli S, Reid J, Malacarne G, Iliev D, Coppola G, Wardell B, Micheletti D, Macalma T, Facci M, Mitchell JT, Perazzolli M, Eldredge G, Gatto P, Oyzerski R, Moretto M, Gutin N, Stefanini M, Chen Y, Segala C, Davenport C, Dematte L, Mraz A, Battilana J, Stormo K, Costa F, Tao Q, Si-Ammour A, Harkins T, Lackey A, Perbost C, Taillon B, Stella A, Solovyev V, Fawcett JA, Sterck L, Vandepoele K, Grando SM, Toppo S, Moser C, Lanchbury J, Bogden R, Skolnick M, Sgaramella V, Bhatnagar SK, Fontana P, Gutin A, Van de Peer Y, Salamini F, Viola R., PLoS ONE 2(12), 2007
PMID: 18094749
A deep survey of alternative splicing in grape reveals changes in the splicing machinery related to tissue, stress condition and genotype.
Vitulo N, Forcato C, Carpinelli EC, Telatin A, Campagna D, D'Angelo M, Zimbello R, Corso M, Vannozzi A, Bonghi C, Lucchin M, Valle G., BMC Plant Biol. 14(), 2014
PMID: 24739459
A new version of the grapevine reference genome assembly (12X.v2) and of its annotation (VCost.v3).
Canaguier A, Grimplet J, Di Gaspero G, Scalabrin S, Duchene E, Choisne N, Mohellibi N, Guichard C, Rombauts S, Le Clainche I, Berard A, Chauveau A, Bounon R, Rustenholz C, Morgante M, Le Paslier MC, Brunel D, Adam-Blondon AF., Genom Data 14(), 2017
PMID: 28971018
Floral meristem identity genes are expressed during tendril development in grapevine.
Calonje M, Cubas P, Martinez-Zapater JM, Carmona MJ., Plant Physiol. 135(3), 2004
PMID: 15247405
Berry and phenology-related traits in grapevine (Vitis vinifera L.): from quantitative trait loci to underlying genes.
Costantini L, Battilana J, Lamaj F, Fanizza G, Grando MS., BMC Plant Biol. 8(), 2008
PMID: 18419811
QTL analysis of flowering time and ripening traits suggests an impact of a genomic region on linkage group 1 in Vitis.
Fechter I, Hausmann L, Zyprian E, Daum M, Holtgrawe D, Weisshaar B, Topfer R., Theor. Appl. Genet. 127(9), 2014
PMID: 25112201
Genome-wide analysis of MIKCC-type MADS box genes in grapevine.
Diaz-Riquelme J, Lijavetzky D, Martinez-Zapater JM, Carmona MJ., Plant Physiol. 149(1), 2008
PMID: 18997115
Haplotype phasing: existing methods and new developments.
Browning SR, Browning BL., Nat. Rev. Genet. 12(10), 2011
PMID: 21921926
The genetics of plant metabolism.
Keurentjes JJ, Fu J, de Vos CH, Lommen A, Hall RD, Bino RJ, van der Plas LH, Jansen RC, Vreugdenhil D, Koornneef M., Nat. Genet. 38(7), 2006
PMID: 16751770
Quantitative trait loci affecting pathogen resistance and ripening of grapevines.
Zyprian E, Ochßner I, Schwander F, Simon S, Hausmann L, Bonow-Rex M, Moreno-Sanz P, Grando MS, Wiedemann-Merdinoglu S, Merdinoglu D, Eibach R, Topfer R., Mol. Genet. Genomics 291(4), 2016
PMID: 27038830
FLOR-ID: an interactive database of flowering-time gene networks in Arabidopsis thaliana.
Bouche F, Lobet G, Tocquin P, Perilleux C., Nucleic Acids Res. 44(D1), 2015
PMID: 26476447
BLAST+: architecture and applications.
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL., BMC Bioinformatics 10(), 2009
PMID: 20003500
Primer3--new capabilities and interfaces.
Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG., Nucleic Acids Res. 40(15), 2012
PMID: 22730293
Trimmomatic: a flexible trimmer for Illumina sequence data.
Bolger AM, Lohse M, Usadel B., Bioinformatics 30(15), 2014
PMID: 24695404
Fast and accurate short read alignment with Burrows-Wheeler transform.
Li H, Durbin R., Bioinformatics 25(14), 2009
PMID: 19451168
The Sequence Alignment/Map format and SAMtools.
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R; 1000 Genome Project Data Processing Subgroup., Bioinformatics 25(16), 2009
PMID: 19505943
The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data.
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA., Genome Res. 20(9), 2010
PMID: 20644199
From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline.
Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, Jordan T, Shakir K, Roazen D, Thibault J, Banks E, Garimella KV, Altshuler D, Gabriel S, DePristo MA., Curr Protoc Bioinformatics 43(), 2013
PMID: 25431634
A framework for variation discovery and genotyping using next-generation DNA sequencing data.
DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ., Nat. Genet. 43(5), 2011
PMID: 21478889
TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions.
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL., Genome Biol. 14(4), 2013
PMID: 23618408
HTSeq--a Python framework to work with high-throughput sequencing data.
Anders S, Pyl PT, Huber W., Bioinformatics 31(2), 2014
PMID: 25260700
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.
Love MI, Huber W, Anders S., Genome Biol. 15(12), 2014
PMID: 25516281
The AP2/EREBP family of plant transcription factors.
Riechmann JL, Meyerowitz EM., Biol. Chem. 379(6), 1998
PMID: 9687012
The homeobox in perspective.
Gehring WJ., Trends Biochem. Sci. 17(8), 1992
PMID: 1357790
The R2R3-MYB gene family in Arabidopsis thaliana.
Stracke R, Werber M, Weisshaar B., Curr. Opin. Plant Biol. 4(5), 2001
PMID: 11597504
Molecular analysis of FRIGIDA, a major determinant of natural variation in Arabidopsis flowering time.
Johanson U, West J, Lister C, Michaels S, Amasino R, Dean C., Science 290(5490), 2000
PMID: 11030654
The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes.
Pysh LD, Wysocka-Diller JW, Camilleri C, Bouchez D, Benfey PN., Plant J. 18(1), 1999
PMID: 10341448
SQUAMOSA promoter-binding protein-like transcription factors: star players for plant growth and development.
Chen X, Zhang Z, Liu D, Zhang K, Li A, Mao L., J Integr Plant Biol 52(11), 2010
PMID: 20977652
A short history of MADS-box genes in plants.
Theissen G, Becker A, Di Rosa A, Kanno A, Kim JT, Munster T, Winter KU, Saedler H., Plant Mol. Biol. 42(1), 2000
PMID: 10688133
HUA1 and HUA2 are two members of the floral homeotic AGAMOUS pathway.
Chen X, Meyerowitz EM., Mol. Cell 3(3), 1999
PMID: 10198637
Tracing the evolution of the floral homeotic B- and C-function genes through genome synteny.
Causier B, Castillo R, Xue Y, Schwarz-Sommer Z, Davies B., Mol. Biol. Evol. 27(11), 2010
PMID: 20566474
Compilation and characterization of a novel WNK family of protein kinases in Arabiodpsis thaliana with reference to circadian rhythms.
Nakamichi N, Murakami-Kojima M, Sato E, Kishi Y, Yamashino T, Mizuno T., Biosci. Biotechnol. Biochem. 66(11), 2002
PMID: 12506983
A WNK kinase binds and phosphorylates V-ATPase subunit C.
Hong-Hermesdorf A, Brux A, Gruber A, Gruber G, Schumacher K., FEBS Lett. 580(3), 2006
PMID: 16427632
The plant WNK gene family and regulation of flowering time in Arabidopsis.
Wang Y, Liu K, Liao H, Zhuang C, Ma H, Yan X., Plant Biol (Stuttg) 10(5), 2008
PMID: 18761494
The ABA-INSENSITIVE-4 (ABI4) transcription factor links redox, hormone and sugar signaling pathways.
Foyer CH, Kerchev PI, Hancock RD., Plant Signal Behav 7(2), 2012
PMID: 22415048
ABSCISIC ACID-INSENSITIVE 4 negatively regulates flowering through directly promoting Arabidopsis FLOWERING LOCUS C transcription.
Shu K, Chen Q, Wu Y, Liu R, Zhang H, Wang S, Tang S, Yang W, Xie Q., J. Exp. Bot. 67(1), 2015
PMID: 26507894
AtGRP7, a nuclear RNA-binding protein as a component of a circadian-regulated negative feedback loop in Arabidopsis thaliana.
Heintzen C, Nater M, Apel K, Staiger D., Proc. Natl. Acad. Sci. U.S.A. 94(16), 1997
PMID: 9238008
REVEILLE1, a Myb-like transcription factor, integrates the circadian clock and auxin pathways.
Rawat R, Schwartz J, Jones MA, Sairanen I, Cheng Y, Andersson CR, Zhao Y, Ljung K, Harmer SL., Proc. Natl. Acad. Sci. U.S.A. 106(39), 2009
PMID: 19805390
EARLY FLOWERING3 Regulates Flowering in Spring Barley by Mediating Gibberellin Production and FLOWERING LOCUS T Expression.
Boden SA, Weiss D, Ross JJ, Davies NW, Trevaskis B, Chandler PM, Swain SM., Plant Cell 26(4), 2014
PMID: 24781117
The TIME FOR COFFEE gene maintains the amplitude and timing of Arabidopsis circadian clocks.
Hall A, Bastow RM, Davis SJ, Hanano S, McWatters HG, Hibberd V, Doyle MR, Sung S, Halliday KJ, Amasino RM, Millar AJ., Plant Cell 15(11), 2003
PMID: 14555691
TIME FOR COFFEE encodes a nuclear regulator in the Arabidopsis thaliana circadian clock.
Ding Z, Millar AJ, Davis AM, Davis SJ., Plant Cell 19(5), 2007
PMID: 17496120
Gibberellin-induced changes in the transcriptome of grapevine (Vitis labrusca × V. vinifera) cv. Kyoho flowers.
Cheng C, Jiao C, Singer SD, Gao M, Xu X, Zhou Y, Li Z, Fei Z, Wang Y, Wang X., BMC Genomics 16(), 2015
PMID: 25888129
A DELLAcate balance: the role of gibberellin in plant morphogenesis.
Fleet CM, Sun TP., Curr. Opin. Plant Biol. 8(1), 2005
PMID: 15653404
Comparative RNA-seq based transcriptomic analysis of bud dormancy in grape.
Khalil-Ur-Rehman M, Sun L, Li CX, Faheem M, Wang W, Tao JM., BMC Plant Biol. 17(1), 2017
PMID: 28103799
HUA2 is required for the expression of floral repressors in Arabidopsis thaliana.
Doyle MR, Bizzell CM, Keller MR, Michaels SD, Song J, Noh YS, Amasino RM., Plant J. 41(3), 2005
PMID: 15659097
The homeobox gene BREVIPEDICELLUS is a key regulator of inflorescence architecture in Arabidopsis.
Venglat SP, Dumonceaux T, Rozwadowski K, Parnell L, Babic V, Keller W, Martienssen R, Selvaraj G, Datla R., Proc. Natl. Acad. Sci. U.S.A. 99(7), 2002
PMID: 11917137
KNAT1 and ERECTA regulate inflorescence architecture in Arabidopsis.
Douglas SJ, Chuck G, Dengler RE, Pelecanda L, Riggs CD., Plant Cell 14(3), 2002
PMID: 11910003
An Arabidopsis SBP-domain fragment with a disrupted C-terminal zinc-binding site retains its tertiary structure.
Yamasaki K, Kigawa T, Inoue M, Yamasaki T, Yabuki T, Aoki M, Seki E, Matsuda T, Tomo Y, Terada T, Shirouzu M, Tanaka A, Seki M, Shinozaki K, Yokoyama S., FEBS Lett. 580(8), 2006
PMID: 16554053
The Arabidopsis BELL1 and KNOX TALE homeodomain proteins interact through a domain conserved between plants and animals.
Bellaoui M, Pidkowich MS, Samach A, Kushalappa K, Kohalmi SE, Modrusan Z, Crosby WL, Haughn GW., Plant Cell 13(11), 2001
PMID: 11701881
Photoexcited CRY2 interacts with CIB1 to regulate transcription and floral initiation in Arabidopsis.
Liu H, Yu X, Li K, Klejnot J, Yang H, Lisiero D, Lin C., Science 322(5907), 2008
PMID: 18988809
Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response.
Fornara F, Panigrahi KC, Gissot L, Sauerbrunn N, Ruhl M, Jarillo JA, Coupland G., Dev. Cell 17(1), 2009
PMID: 19619493
The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana.
Doyle MR, Davis SJ, Bastow RM, McWatters HG, Kozma-Bognar L, Nagy F, Millar AJ, Amasino RM., Nature 419(6902), 2002
PMID: 12214234
Differential floral development and gene expression in grapevines during long and short photoperiods suggests a role for floral genes in dormancy transitioning.
Sreekantan L, Mathiason K, Grimplet J, Schlauch K, Dickerson JA, Fennell AY., Plant Mol. Biol. 73(1-2), 2010
PMID: 20151315
Conversion from CUL4-based COP1-SPA E3 apparatus to UVR8-COP1-SPA complexes underlies a distinct biochemical function of COP1 under UV-B.
Huang X, Ouyang X, Yang P, Lau OS, Chen L, Wei N, Deng XW., Proc. Natl. Acad. Sci. U.S.A. 110(41), 2013
PMID: 24067658

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 31269026
PubMed | Europe PMC

Preprint: 10.1101/584268

Suchen in

Google Scholar