Integrability in Random Two-Matrix Models under Finite-Rank Perturbations
Checinski T (2019)
Bielefeld: Universität Bielefeld.
Bielefelder E-Dissertation | Englisch
Download
Autor*in
Gutachter*in / Betreuer*in
Einrichtung
Abstract / Bemerkung
In Quantum Chromodynamics low energy spectral properties of the Dirac operator can be described
by random matrix ensembles. In time-series analysis strong statistical fluctuations coincide with
eigenvalue statistics of random matrices. These two completely different fields share the same type of
random matrix ensembles: chiral symmetric random matrices.
The analysis of two random-matrix models of this type is presented: the product of two coupled
Wishart matrices and the sum of two independent Wishart matrices. Here, we expose the integrability
of these models and compute quantities being of interest in Quantum Chromodynamics and in time-
series analysis, respectively.
Jahr
2019
Urheberrecht / Lizenzen
Page URI
https://pub.uni-bielefeld.de/record/2936266
Zitieren
Checinski T. Integrability in Random Two-Matrix Models under Finite-Rank Perturbations. Bielefeld: Universität Bielefeld; 2019.
Checinski, T. (2019). Integrability in Random Two-Matrix Models under Finite-Rank Perturbations. Bielefeld: Universität Bielefeld.
Checinski, Tomasz. 2019. Integrability in Random Two-Matrix Models under Finite-Rank Perturbations. Bielefeld: Universität Bielefeld.
Checinski, T. (2019). Integrability in Random Two-Matrix Models under Finite-Rank Perturbations. Bielefeld: Universität Bielefeld.
Checinski, T., 2019. Integrability in Random Two-Matrix Models under Finite-Rank Perturbations, Bielefeld: Universität Bielefeld.
T. Checinski, Integrability in Random Two-Matrix Models under Finite-Rank Perturbations, Bielefeld: Universität Bielefeld, 2019.
Checinski, T.: Integrability in Random Two-Matrix Models under Finite-Rank Perturbations. Universität Bielefeld, Bielefeld (2019).
Checinski, Tomasz. Integrability in Random Two-Matrix Models under Finite-Rank Perturbations. Bielefeld: Universität Bielefeld, 2019.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International Public License (CC BY-SA 4.0):
Volltext(e)
Name
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-06T09:19:08Z
MD5 Prüfsumme
77907894c226dcbc06b337b17a7f877d