Integrability in Random Two-Matrix Models under Finite-Rank Perturbations

Checinski T (2019)
Bielefeld: Universität Bielefeld.

Bielefelder E-Dissertation | Englisch
 
Download
OA 1.40 MB
Gutachter*in / Betreuer*in
Abstract / Bemerkung
In Quantum Chromodynamics low energy spectral properties of the Dirac operator can be described by random matrix ensembles. In time-series analysis strong statistical fluctuations coincide with eigenvalue statistics of random matrices. These two completely different fields share the same type of random matrix ensembles: chiral symmetric random matrices. The analysis of two random-matrix models of this type is presented: the product of two coupled Wishart matrices and the sum of two independent Wishart matrices. Here, we expose the integrability of these models and compute quantities being of interest in Quantum Chromodynamics and in time- series analysis, respectively.
Jahr
2019
Page URI
https://pub.uni-bielefeld.de/record/2936266

Zitieren

Checinski T. Integrability in Random Two-Matrix Models under Finite-Rank Perturbations. Bielefeld: Universität Bielefeld; 2019.
Checinski, T. (2019). Integrability in Random Two-Matrix Models under Finite-Rank Perturbations. Bielefeld: Universität Bielefeld.
Checinski, Tomasz. 2019. Integrability in Random Two-Matrix Models under Finite-Rank Perturbations. Bielefeld: Universität Bielefeld.
Checinski, T. (2019). Integrability in Random Two-Matrix Models under Finite-Rank Perturbations. Bielefeld: Universität Bielefeld.
Checinski, T., 2019. Integrability in Random Two-Matrix Models under Finite-Rank Perturbations, Bielefeld: Universität Bielefeld.
T. Checinski, Integrability in Random Two-Matrix Models under Finite-Rank Perturbations, Bielefeld: Universität Bielefeld, 2019.
Checinski, T.: Integrability in Random Two-Matrix Models under Finite-Rank Perturbations. Universität Bielefeld, Bielefeld (2019).
Checinski, Tomasz. Integrability in Random Two-Matrix Models under Finite-Rank Perturbations. Bielefeld: Universität Bielefeld, 2019.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International Public License (CC BY-SA 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:19:08Z
MD5 Prüfsumme
77907894c226dcbc06b337b17a7f877d


Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar