Shared neural underpinnings of multisensory integration and trial-by-trial perceptual recalibration in humans.

Park H, Kayser C (2019)
eLife 8: 47001.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Perception adapts to mismatching multisensory information, both when different cues appear simultaneously and when they appear sequentially. While both multisensory integration and adaptive trial-by-trial recalibration are central for behavior, it remains unknown whether they are mechanistically linked and arise from a common neural substrate. To relate the neural underpinnings of sensory integration and recalibration, we measured whole-brain magnetoencephalography while human participants performed an audio-visual ventriloquist task. Using single-trial multivariate analysis, we localized the perceptually-relevant encoding of multisensory information within and between trials. While we found neural signatures of multisensory integration within temporal and parietal regions, only medial superior parietal activity encoded past and current sensory information and mediated the perceptual recalibration within and between trials. These results highlight a common neural substrate of sensory integration and perceptual recalibration, and reveal a role of medial parietal regions in linking present and previous multisensory evidence to guide adaptive behavior. © 2019, Park & Kayser.
Page URI


Park H, Kayser C. Shared neural underpinnings of multisensory integration and trial-by-trial perceptual recalibration in humans. eLife. 2019;8: 47001.
Park, H., & Kayser, C. (2019). Shared neural underpinnings of multisensory integration and trial-by-trial perceptual recalibration in humans. eLife, 8, 47001. doi:10.7554/eLife.47001
Park, Hame, and Kayser, Christoph. 2019. “Shared neural underpinnings of multisensory integration and trial-by-trial perceptual recalibration in humans.”. eLife 8: 47001.
Park, H., and Kayser, C. (2019). Shared neural underpinnings of multisensory integration and trial-by-trial perceptual recalibration in humans. eLife 8:47001.
Park, H., & Kayser, C., 2019. Shared neural underpinnings of multisensory integration and trial-by-trial perceptual recalibration in humans. eLife, 8: 47001.
H. Park and C. Kayser, “Shared neural underpinnings of multisensory integration and trial-by-trial perceptual recalibration in humans.”, eLife, vol. 8, 2019, : 47001.
Park, H., Kayser, C.: Shared neural underpinnings of multisensory integration and trial-by-trial perceptual recalibration in humans. eLife. 8, : 47001 (2019).
Park, Hame, and Kayser, Christoph. “Shared neural underpinnings of multisensory integration and trial-by-trial perceptual recalibration in humans.”. eLife 8 (2019): 47001.

89 References

Daten bereitgestellt von Europe PubMed Central.

Posterior parietal cortex represents sensory history and mediates its effects on behaviour.
Akrami A, Kopec CD, Diamond ME, Brody CD., Nature 554(7692), 2018
PMID: 29414944
Multisensory integration: psychophysics, neurophysiology, and computation.
Angelaki DE, Gu Y, DeAngelis GC., Curr. Opin. Neurobiol. 19(4), 2009
PMID: 19616425
Integration of Visual Information in Auditory Cortex Promotes Auditory Scene Analysis through Multisensory Binding.
Atilgan H, Town SM, Wood KC, Jones GP, Maddox RK, Lee AKC, Bizley JK., Neuron 97(3), 2018
PMID: 29395914
Unraveling multisensory integration: patchy organization within human STS multisensory cortex.
Beauchamp MS, Argall BD, Bodurka J, Duyn JH, Martin A., Nat. Neurosci. 7(11), 2004
PMID: 15475952
Utilizing the ventriloquism-effect to investigate audio-visual binding.
Bischoff M, Walter B, Blecker CR, Morgen K, Vaitl D, Sammer G., Neuropsychologia 45(3), 2006
PMID: 16620884
Where are multisensory signals combined for perceptual decision-making?
Bizley JK, Jones GP, Town SM., Curr. Opin. Neurobiol. 40(), 2016
PMID: 27344253
The what, where and how of auditory-object perception.
Bizley JK, Cohen YE., Nat. Rev. Neurosci. 14(10), 2013
PMID: 24052177
Single-trial analysis and classification of ERP components--a tutorial.
Blankertz B, Lemm S, Treder M, Haufe S, Muller KR., Neuroimage 56(2), 2010
PMID: 20600976
Neural basis of the ventriloquist illusion.
Bonath B, Noesselt T, Martinez A, Mishra J, Schwiecker K, Heinze HJ, Hillyard SA., Curr. Biol. 17(19), 2007
PMID: 17884498
Audio-visual synchrony modulates the ventriloquist illusion and its neural/spatial representation in the auditory cortex.
Bonath B, Noesselt T, Krauel K, Tyll S, Tempelmann C, Hillyard SA., Neuroimage 98(), 2014
PMID: 24814210
Accumulation and decay of visual capture and the ventriloquism aftereffect caused by brief audio-visual disparities.
Bosen AK, Fleming JT, Allen PD, O'Neill WE, Paige GD., Exp Brain Res 235(2), 2016
PMID: 27837258
Multiple time scales of the ventriloquism aftereffect.
Bosen AK, Fleming JT, Allen PD, O'Neill WE, Paige GD., PLoS ONE 13(8), 2018
PMID: 30067790
Rapid and independent memory formation in the parietal cortex.
Brodt S, Pohlchen D, Flanagin VL, Glasauer S, Gais S, Schonauer M., Proc. Natl. Acad. Sci. U.S.A. 113(46), 2016
PMID: 27803331
Tactile capture of auditory localization: an event-related potential study.
Bruns P, Roder B., Eur. J. Neurosci. 31(10), 2010
PMID: 20584189
An fMRI Study of the Ventriloquism Effect.
Callan A, Callan D, Ando H., Cereb. Cortex 25(11), 2015
PMID: 25577576
Causal Inference in the Multisensory Brain.
Cao Y, Summerfield C, Park H, Giordano BL, Kayser C., Neuron (), 2019
PMID: 31047778
Flexible egocentric and allocentric representations of heading signals in parietal cortex.
Chen X, DeAngelis GC, Angelaki DE., Proc. Natl. Acad. Sci. U.S.A. 115(14), 2018
PMID: 29555744
From perception to conception: how meaningful objects are processed over time.
Clarke A, Taylor KI, Devereux B, Randall B, Tyler LK., Cereb. Cortex 23(1), 2012
PMID: 22275484
Predicting the Time Course of Individual Objects with MEG.
Clarke A, Devereux BJ, Randall B, Tyler LK., Cereb. Cortex 25(10), 2014
PMID: 25209607
Invisible Flashes Alter Perceived Sound Location.
Delong P, Aller M, Giani AS, Rohe T, Conrad V, Watanabe M, Noppeney U., Sci Rep 8(1), 2018
PMID: 30120294
Perceptual load influences auditory space perception in the ventriloquist aftereffect.
Eramudugolla R, Kamke MR, Soto-Faraco S, Mattingley JB., Cognition 118(1), 2010
PMID: 20979992
Bridging the gap between theories of sensory cue integration and the physiology of multisensory neurons.
Fetsch CR, DeAngelis GC, Angelaki DE., Nat. Rev. Neurosci. 14(6), 2013
PMID: 23686172
Fischl B., Neuroimage 62(2), 2012
PMID: 22248573
The aftereffects of ventriloquism: the time course of the visual recalibration of auditory localization.
Frissen I, Vroomen J, de Gelder B., Seeing Perceiving 25(1), 2012
PMID: 22353565
Timing and laminar profile of eye-position effects on auditory responses in primate auditory cortex.
Fu KM, Shah AS, O'Connell MN, McGinnis T, Eckholdt H, Lakatos P, Smiley J, Schroeder CE., J. Neurophysiol. 92(6), 2004
PMID: 15282263
Recalibration of audiovisual simultaneity.
Fujisaki W, Shimojo S, Kashino M, Nishida S., Nat. Neurosci. 7(7), 2004
PMID: 15195098
Contributions of local speech encoding and functional connectivity to audio-visual speech perception.
Giordano BL, Ince RAA, Gross J, Schyns PG, Panzeri S, Kayser C., Elife 6(), 2017
PMID: 28590903
From categories to dimensions: spatio-temporal dynamics of the cerebral representations of emotion in voice
Giordano BL, Whiting W, Kriegeskorte N, Kotz SA, Belin P, Gross J., 2018
PMID: PPR18680
Finding decodable information that can be read out in behaviour.
Grootswagers T, Cichy RM, Carlson TA., Neuroimage 179(), 2018
PMID: 29886145
Prestimulus influences on auditory perception from sensory representations and decision processes.
Kayser SJ, McNair SW, Kayser C., Proc. Natl. Acad. Sci. U.S.A. 113(17), 2016
PMID: 27071110
Saccadic spike potentials in gamma-band EEG: characterization, detection and suppression.
Keren AS, Yuval-Greenberg S, Deouell LY., Neuroimage 49(3), 2009
PMID: 19874901
Auditory cortex encodes the perceptual interpretation of ambiguous sound.
Kilian-Hutten N, Valente G, Vroomen J, Formisano E., J. Neurosci. 31(5), 2011
PMID: 21289180
Brain activation during audiovisual exposure anticipates future perception of ambiguous speech.
Kilian-Hutten N, Vroomen J, Formisano E., Neuroimage 57(4), 2011
PMID: 21664279
Reference frame of the ventriloquism aftereffect.
Kopco N, Lin IF, Shinn-Cunningham BG, Groh JM., J. Neurosci. 29(44), 2009
PMID: 19889992
Causal inference in multisensory perception.
Kording KP, Beierholm U, Ma WJ, Quartz S, Tenenbaum JB, Shams L., PLoS ONE 2(9), 2007
PMID: 17895984
Processing of sound location in human cortex.
Lewald J, Riederer KA, Lentz T, Meister IG., Eur. J. Neurosci. 27(5), 2008
PMID: 18364040
A direct test for lateralization of language activation using fMRI: comparison with invasive assessments in children with epilepsy.
Liegeois F, Connelly A, Salmond CH, Gadian DG, Vargha-Khadem F, Baldeweg T., Neuroimage 17(4), 2002
PMID: 12498760
McGurk illusion recalibrates subsequent auditory perception.
Luttke CS, Ekman M, van Gerven MA, de Lange FP., Sci Rep 6(), 2016
PMID: 27611960
Rapid recalibration of speech perception after experiencing the McGurk illusion.
Luttke CS, Perez-Bellido A, de Lange FP., R Soc Open Sci 5(3), 2018
PMID: 29657743
Nonparametric statistical testing of EEG- and MEG-data.
Maris E, Oostenveld R., J. Neurosci. Methods 164(1), 2007
PMID: 17517438
Integration of audiovisual spatial signals is not consistent with maximum likelihood estimation.
Meijer D, Veselic S, Calafiore C, Noppeney U., Cortex 119(), 2019
PMID: 31082680
Predicting auditory space calibration from recent multisensory experience.
Mendonca C, Escher A, van de Par S, Colonius H., Exp Brain Res 233(7), 2015
PMID: 25795081
FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data.
Oostenveld R, Fries P, Maris E, Schoffelen JM., Comput Intell Neurosci 2011(), 2010
PMID: 21253357
Converging evidence of linear independent components in EEG
Parra L, Sajda P., 2003
Human scalp potentials reflect a mixture of decision-related signals during perceptual choices.
Philiastides MG, Heekeren HR, Sajda P., J. Neurosci. 34(50), 2014
PMID: 25505339
Separating distractor rejection and target detection in posterior parietal cortex--an event-related fMRI study of visual marking.
Pollmann S, Weidner R, Humphreys GW, Olivers CN, Muller K, Lohmann G, Wiggins CJ, Watson DG., Neuroimage 18(2), 2003
PMID: 12595185
Distance-Dependent Head-Related transfer functions measured with high spatial resolution using a spark gap
Qu T, Xiao Z, Gong M, Huang Y, Li X, Wu X., 2009
The after-effects of ventriloquism.
Radeau M, Bertelson P., Q J Exp Psychol 26(1), 1974
PMID: 4814864
A category-free neural population supports evolving demands during decision-making.
Raposo D, Kaufman MT, Churchland AK., Nat. Neurosci. 17(12), 2014
PMID: 25383902
Auditory spatial perception dynamically realigns with changing eye position.
Razavi B, O'Neill WE, Paige GD., J. Neurosci. 27(38), 2007
PMID: 17881531
Rapidly induced auditory plasticity: the ventriloquism aftereffect.
Recanzone GH., Proc. Natl. Acad. Sci. U.S.A. 95(3), 1998
PMID: 9448253
Bayesian model selection for group studies - revisited.
Rigoux L, Stephan KE, Friston KJ, Daunizeau J., Neuroimage 84(), 2013
PMID: 24018303
Gradual acquisition of visuospatial associative memory representations via the dorsal precuneus.
Schott BH, Wustenberg T, Lucke E, Pohl IM, Richter A, Seidenbecher CI, Pollmann S, Kizilirmak JM, Richardson-Klavehn A., Hum Brain Mapp 40(5), 2018
PMID: 30430687
Multisensory maps in parietal cortex.
Sereno MI, Huang RS., Curr. Opin. Neurobiol. 24(1), 2013
PMID: 24492077
The spatio-temporal profile of multisensory integration.
Starke J, Ball F, Heinze HJ, Noesselt T., Eur. J. Neurosci. (), 2017
PMID: 29057531
Egocentric and allocentric representations in auditory cortex.
Town SM, Brimijoin WO, Bizley JK., PLoS Biol. 15(6), 2017
PMID: 28617796

Tukey JW., 1977
Rapid recalibration to audiovisual asynchrony.
Van der Burg E, Alais D, Cass J., J. Neurosci. 33(37), 2013
PMID: 24027264
Rapid recalibration to audiovisual asynchrony follows the physical-not the perceived-temporal order.
Van der Burg E, Alais D, Cass J., Atten Percept Psychophys 80(8), 2018
PMID: 29968078
Probabilistic Maps of Visual Topography in Human Cortex.
Wang L, Mruczek RE, Arcaro MJ, Kastner S., Cereb. Cortex 25(10), 2014
PMID: 25452571
Eye position affects activity in primary auditory cortex of primates.
Werner-Reiss U, Kelly KA, Trause AS, Underhill AM, Groh JM., Curr. Biol. 13(7), 2003
PMID: 12676085
Computational characterization of visually induced auditory spatial adaptation.
Wozny DR, Shams L., Front Integr Neurosci 5(), 2011
PMID: 22069383
The role of auditory cortex in the spatial ventriloquism aftereffect.
Zierul B, Roder B, Tempelmann C, Bruns P, Noesselt T., Neuroimage 162(), 2017
PMID: 28889003
Plasticity in human sound localization induced by compressed spatial vision.
Zwiers MP, Van Opstal AJ, Paige GD., Nat. Neurosci. 6(2), 2003
PMID: 12524547

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 31246172
PubMed | Europe PMC

Preprint: 10.1101/566927

Suchen in

Google Scholar