Arguments for an additional long-lived intermediate in the photocycle of the full-length aureochrome 1c receptor: A time-resolved small-angle X-ray scattering study

Bannister S, Böhm E, Zinn T, Hellweg T, Kottke T (2019)
Structural Dynamics 6(3): 34701.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 1.56 MB
Autor*in
Abstract / Bemerkung
Aureochromes (AUREO) act as blue-light photoreceptors in algae. They consist of a light-, oxygen-, voltage-sensitive (LOV) domain and a DNA-binding basic region/leucine zipper. Illumination of the flavin cofactor in LOV leads to the formation of an adduct, followed by global structural changes. Here, we first applied UV/vis spectroscopy to characterize the photocycle of full-length aureochrome 1c (PtAUREO1c) from the diatom Phaeodactylum tricornutum. With a time constant of 850 s and a quantum yield of 23%, PtAUREO1c reveals a faster recovery time and a much lower sensitivity toward light than PtAUREO1a, pointing to its role as a high light sensor in vivo. UV/vis spectroscopy offers details on the local recovery of the flavin chromophore. However, kinetic information on the global structural recovery of full-length AUREO or any other multidomain LOV protein is missing. This information is essential not least for the photoreceptors' applications as optogenetic devices. Therefore, we established a procedure to apply small-angle X-ray scattering on PtAUREO1c in a time-resolved manner employing an in-house setup. In combination with UV/vis spectroscopy under similar conditions, we revealed a discrepancy between the recovery of the global protein structure and the adduct lifetime. Accordingly, we propose to supplement the photocycle by an intermediate state (I447), which decays with a time constant of about 800 s and prolongs the lifetime of the signaling state.
Erscheinungsjahr
2019
Zeitschriftentitel
Structural Dynamics
Band
6
Ausgabe
3
Art.-Nr.
34701
ISSN
2329-7778
eISSN
2329-7778
Page URI
https://pub.uni-bielefeld.de/record/2936173

Zitieren

Bannister S, Böhm E, Zinn T, Hellweg T, Kottke T. Arguments for an additional long-lived intermediate in the photocycle of the full-length aureochrome 1c receptor: A time-resolved small-angle X-ray scattering study. Structural Dynamics. 2019;6(3): 34701.
Bannister, S., Böhm, E., Zinn, T., Hellweg, T., & Kottke, T. (2019). Arguments for an additional long-lived intermediate in the photocycle of the full-length aureochrome 1c receptor: A time-resolved small-angle X-ray scattering study. Structural Dynamics, 6(3), 34701. doi:10.1063/1.5095063
Bannister, S., Böhm, E., Zinn, T., Hellweg, T., and Kottke, T. (2019). Arguments for an additional long-lived intermediate in the photocycle of the full-length aureochrome 1c receptor: A time-resolved small-angle X-ray scattering study. Structural Dynamics 6:34701.
Bannister, S., et al., 2019. Arguments for an additional long-lived intermediate in the photocycle of the full-length aureochrome 1c receptor: A time-resolved small-angle X-ray scattering study. Structural Dynamics, 6(3): 34701.
S. Bannister, et al., “Arguments for an additional long-lived intermediate in the photocycle of the full-length aureochrome 1c receptor: A time-resolved small-angle X-ray scattering study”, Structural Dynamics, vol. 6, 2019, : 34701.
Bannister, S., Böhm, E., Zinn, T., Hellweg, T., Kottke, T.: Arguments for an additional long-lived intermediate in the photocycle of the full-length aureochrome 1c receptor: A time-resolved small-angle X-ray scattering study. Structural Dynamics. 6, : 34701 (2019).
Bannister, Saskia, Böhm, Elena, Zinn, Thomas, Hellweg, Thomas, and Kottke, Tilman. “Arguments for an additional long-lived intermediate in the photocycle of the full-length aureochrome 1c receptor: A time-resolved small-angle X-ray scattering study”. Structural Dynamics 6.3 (2019): 34701.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-08-06T09:30:12Z
MD5 Prüfsumme
771ce8a886ab795f6cd00a6bff2983dc

45 References

Daten bereitgestellt von Europe PubMed Central.

The LOV domain family: photoresponsive signaling modules coupled to diverse output domains.
Crosson S, Rajagopal S, Moffat K., Biochemistry 42(1), 2003
PMID: 12515534
Allosteric communication between DNA-binding and light-responsive domains of diatom class I aureochromes.
Banerjee A, Herman E, Serif M, Maestre-Reyna M, Hepp S, Pokorny R, Kroth PG, Essen LO, Kottke T., Nucleic Acids Res. 44(12), 2016
PMID: 27179025
Aureochrome 1a is involved in the photoacclimation of the diatom Phaeodactylum tricornutum.
Schellenberger Costa B, Sachse M, Jungandreas A, Bartulos CR, Gruber A, Jakob T, Kroth PG, Wilhelm C., PLoS ONE 8(9), 2013
PMID: 24073211
Structure of a Native-like Aureochrome 1a LOV Domain Dimer from Phaeodactylum tricornutum.
Banerjee A, Herman E, Kottke T, Essen LO., Structure 24(1), 2015
PMID: 26688213
Quaternary structure of LOV-domain containing polypeptide of Arabidopsis FKF1 protein.
Nakasako M, Matsuoka D, Zikihara K, Tokutomi S., FEBS Lett. 579(5), 2005
PMID: 15710392
Light-induced conformational changes of LOV1 (light oxygen voltage-sensing domain 1) and LOV2 relative to the kinase domain and regulation of kinase activity in Chlamydomonas phototropin.
Okajima K, Aihara Y, Takayama Y, Nakajima M, Kashojiya S, Hikima T, Oroguchi T, Kobayashi A, Sekiguchi Y, Yamamoto M, Suzuki T, Nagatani A, Nakasako M, Tokutomi S., J. Biol. Chem. 289(1), 2013
PMID: 24285544
Sequential conformational transitions and α-helical supercoiling regulate a sensor histidine kinase.
Berntsson O, Diensthuber RP, Panman MR, Bjorling A, Gustavsson E, Hoernke M, Hughes AJ, Henry L, Niebling S, Takala H, Ihalainen JA, Newby G, Kerruth S, Heberle J, Liebi M, Menzel A, Henning R, Kosheleva I, Moglich A, Westenhoff S., Nat Commun 8(1), 2017
PMID: 28819239
Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain.
Huala E, Oeller PW, Liscum E, Han IS, Larsen E, Briggs WR., Science 278(5346), 1997
PMID: 9405347
Time-resolved dimerization of a PAS-LOV protein measured with photocoupled small angle X-ray scattering.
Lamb JS, Zoltowski BD, Pabit SA, Crane BR, Pollack L., J. Am. Chem. Soc. 130(37), 2008
PMID: 18715002
Mutual exchange of kinetic properties by extended mutagenesis in two short LOV domain proteins from Pseudomonas putida.
Jentzsch K, Wirtz A, Circolone F, Drepper T, Losi A, Gartner W, Jaeger KE, Krauss U., Biochemistry 48(43), 2009
PMID: 19772355
Small-angle X-ray scattering study of the kinetics of light-dark transition in a LOV protein.
Rollen K, Granzin J, Batra-Safferling R, Stadler AM., PLoS ONE 13(7), 2018
PMID: 30011332
UV-visible spectroscopy as a tool to study flavoproteins.
Macheroux P., Methods Mol. Biol. 131(), 1999
PMID: 10494538
Calculation of protein extinction coefficients from amino acid sequence data.
Gill SC, von Hippel PH., Anal. Biochem. 182(2), 1989
PMID: 2610349
A multipurpose instrument for time-resolved ultra-small-angle and coherent X-ray scattering.
Narayanan T, Sztucki M, Van Vaerenbergh P, Leonardon J, Gorini J, Claustre L, Sever F, Morse J, Boesecke P., J Appl Crystallogr 51(Pt 6), 2018
PMID: 30546286
PAS domains: internal sensors of oxygen, redox potential, and light.
Taylor BL, Zhulin IB., Microbiol. Mol. Biol. Rev. 63(2), 1999
PMID: 10357859
Phot-LOV1: photocycle of a blue-light receptor domain from the green alga Chlamydomonas reinhardtii.
Kottke T, Heberle J, Hehn D, Dick B, Hegemann P., Biophys. J. 84(2 Pt 1), 2003
PMID: 12547798
The amino acids surrounding the flavin 7a-methyl group determine the UVA spectral features of a LOV protein.
Raffelberg S, Gutt A, Gartner W, Mandalari C, Abbruzzetti S, Viappiani C, Losi A., Biol. Chem. 394(11), 2013
PMID: 23828427
Deconvolutions based on singular value decomposition and the pseudoinverse: a guide for beginners.
Hendler RW, Shrager RI., J. Biochem. Biophys. Methods 28(1), 1994
PMID: 8151067
The phot LOV2 domain and its interaction with LOV1.
Guo H, Kottke T, Hegemann P, Dick B., Biophys. J. 89(1), 2005
PMID: 15879473
Intramolecular proton transfers and structural changes during the photocycle of the LOV2 domain of phototropin 1.
Corchnoy SB, Swartz TE, Lewis JW, Szundi I, Briggs WR, Bogomolni RA., J. Biol. Chem. 278(2), 2002
PMID: 12411437
Conformational changes in a photosensory LOV domain monitored by time-resolved NMR spectroscopy.
Harper SM, Neil LC, Day IJ, Hore PJ, Gardner KH., J. Am. Chem. Soc. 126(11), 2004
PMID: 15025443
When is the helix conformation restored after the reverse reaction of phototropin?
Kawaguchi Y, Nakasone Y, Zikihara K, Tokutomi S, Terazima M., J. Am. Chem. Soc. 132(26), 2010
PMID: 20536129
LOV (light, oxygen, or voltage) domains of the blue-light photoreceptor phototropin (nph1): binding sites for the chromophore flavin mononucleotide.
Christie JM, Salomon M, Nozue K, Wada M, Briggs WR., Proc. Natl. Acad. Sci. U.S.A. 96(15), 1999
PMID: 10411952
Conformational dynamics of phototropin 2 LOV2 domain with the linker upon photoexcitation.
Eitoku T, Nakasone Y, Matsuoka D, Tokutomi S, Terazima M., J. Am. Chem. Soc. 127(38), 2005
PMID: 16173753
Unfolding of the C-Terminal Jα Helix in the LOV2 Photoreceptor Domain Observed by Time-Resolved Vibrational Spectroscopy.
Konold PE, Mathes T, Weiβenborn J, Groot ML, Hegemann P, Kennis JT., J Phys Chem Lett 7(17), 2016
PMID: 27537211
The fast protein folding problem.
Gruebele M., Annu Rev Phys Chem 50(), 1999
PMID: 15012420
Protein Folding: A Perspective from Theory and Experiment.
Dobson CM, Sali A, Karplus M., Angew. Chem. Int. Ed. Engl. 37(7), 1998
PMID: 29711488
Spatio-temporally precise activation of engineered receptor tyrosine kinases by light.
Grusch M, Schelch K, Riedler R, Reichhart E, Differ C, Berger W, Ingles-Prieto A, Janovjak H., EMBO J. 33(15), 2014
PMID: 24986882
Light-assisted small-molecule screening against protein kinases.
Ingles-Prieto A, Reichhart E, Muellner MK, Nowak M, Nijman SM, Grusch M, Janovjak H., Nat. Chem. Biol. 11(12), 2015
PMID: 26457372
Optogenetic Control of Nodal Signaling Reveals a Temporal Pattern of Nodal Signaling Regulating Cell Fate Specification during Gastrulation.
Sako K, Pradhan SJ, Barone V, Ingles-Prieto A, Muller P, Ruprecht V, Capek D, Galande S, Janovjak H, Heisenberg CP., Cell Rep 16(3), 2016
PMID: 27396324
Aureochrome 1 illuminated: structural changes of a transcription factor probed by molecular spectroscopy.
Kerruth S, Ataka K, Frey D, Schlichting I, Heberle J., PLoS ONE 9(7), 2014
PMID: 25058114
AUREOCHROME, a photoreceptor required for photomorphogenesis in stramenopiles.
Takahashi F, Yamagata D, Ishikawa M, Fukamatsu Y, Ogura Y, Kasahara M, Kiyosue T, Kikuyama M, Wada M, Kataoka H., Proc. Natl. Acad. Sci. U.S.A. 104(49), 2007
PMID: 18003911
Functional and topological diversity of LOV domain photoreceptors.
Glantz ST, Carpenter EJ, Melkonian M, Gardner KH, Boyden ES, Wong GK, Chow BY., Proc. Natl. Acad. Sci. U.S.A. 113(11), 2016
PMID: 26929367
Photoreactions of aureochrome-1.
Toyooka T, Hisatomi O, Takahashi F, Kataoka H, Terazima M., Biophys. J. 100(11), 2011
PMID: 21641326

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 31263739
PubMed | Europe PMC

Suchen in

Google Scholar