Universal Bounds and Monotonicity Properties of Ratios of Hermite and Parabolic Cylinder Functions

Koch T (2019) Center for Mathematical Economics Working Papers; 615.
Bielefeld: Center for Mathematical Economics.

Download
OA 358.06 KB
Diskussionspapier | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Abstract / Bemerkung
We obtain so far unproved properties of a ratio involving a class of Hermite and parabolic cylinder functions. Those ratios are shown to be strictly decreasing and bounded by universal constants. Diff erently to usual analytic approaches, we employ simple purely probabilistic arguments to derive our results. In particular, we exploit the relation between Hermite and parabolic cylinder functions and the eigenfunctions of the infi nitesimal generator of the Ornstein-Uhlenbeck process. As a byproduct, we obtain Turán type inequalities.
Erscheinungsjahr
Band
615
ISSN
PUB-ID

Zitieren

Koch T. Universal Bounds and Monotonicity Properties of Ratios of Hermite and Parabolic Cylinder Functions. Center for Mathematical Economics Working Papers. Vol 615. Bielefeld: Center for Mathematical Economics; 2019.
Koch, T. (2019). Universal Bounds and Monotonicity Properties of Ratios of Hermite and Parabolic Cylinder Functions (Center for Mathematical Economics Working Papers, 615). Bielefeld: Center for Mathematical Economics.
Koch, T. (2019). Universal Bounds and Monotonicity Properties of Ratios of Hermite and Parabolic Cylinder Functions. Center for Mathematical Economics Working Papers, 615, Bielefeld: Center for Mathematical Economics.
Koch, T., 2019. Universal Bounds and Monotonicity Properties of Ratios of Hermite and Parabolic Cylinder Functions, Center for Mathematical Economics Working Papers, no.615, Bielefeld: Center for Mathematical Economics.
T. Koch, Universal Bounds and Monotonicity Properties of Ratios of Hermite and Parabolic Cylinder Functions, Center for Mathematical Economics Working Papers, vol. 615, Bielefeld: Center for Mathematical Economics, 2019.
Koch, T.: Universal Bounds and Monotonicity Properties of Ratios of Hermite and Parabolic Cylinder Functions. Center for Mathematical Economics Working Papers, 615. Center for Mathematical Economics, Bielefeld (2019).
Koch, Torben. Universal Bounds and Monotonicity Properties of Ratios of Hermite and Parabolic Cylinder Functions. Bielefeld: Center for Mathematical Economics, 2019. Center for Mathematical Economics Working Papers. 615.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-05-22T09:33:31Z

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar