Octreotide Conjugates for Tumor Targeting and Imaging.

Figueras Agustí E, Martins A, Borbély AN, Le Joncour V, Cordella P, Perego R, Modena D, Pagani P, Esposito S, Auciello G, Frese M, et al. (2019)
Pharmaceutics 11(5): 220.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 1.97 MB
Autor*in
Figueras Agustí, EduardUniBi; Martins, Ana; Borbély, Adina NoémiUniBi; Le Joncour, Vadim; Cordella, Paola; Perego, Raffaella; Modena, Daniela; Pagani, Paolo; Esposito, Simone; Auciello, Giulio; Frese, MarcelUniBi; Gallinari, Paola
Alle
Abstract / Bemerkung
Tumor targeting has emerged as an advantageous approach to improving the efficacy and safety of cytotoxic agents or radiolabeled ligands that do not preferentially accumulate in the tumor tissue. The somatostatin receptors (SSTRs) belong to the G-protein-coupled receptor superfamily and they are overexpressed in many neuroendocrine tumors (NETs). SSTRs can be efficiently targeted with octreotide, a cyclic octapeptide that is derived from native somatostatin. The conjugation of cargoes to octreotide represents an attractive approach for effective tumor targeting. In this study, we conjugated octreotide to cryptophycin, which is a highly cytotoxic depsipeptide, through the protease cleavable Val-Cit dipeptide linker using two different self-immolative moieties. The biological activity was investigated in vitro and the self-immolative part largely influenced the stability of the conjugates. Replacement of cryptophycin by the infrared cyanine dye Cy5.5 was exploited to elucidate the tumor targeting properties of the conjugates in vitro and in vivo. The compound efficiently and selectively internalized in cells overexpressing SSTR2 and accumulated in xenografts for a prolonged time. Our results on the in vivo properties indicate that octreotide may serve as an efficient delivery vehicle for tumor targeting.
Erscheinungsjahr
2019
Zeitschriftentitel
Pharmaceutics
Band
11
Ausgabe
5
Art.-Nr.
220
ISSN
1999-4923
eISSN
1999-4923
Page URI
https://pub.uni-bielefeld.de/record/2935650

Zitieren

Figueras Agustí E, Martins A, Borbély AN, et al. Octreotide Conjugates for Tumor Targeting and Imaging. Pharmaceutics. 2019;11(5): 220.
Figueras Agustí, E., Martins, A., Borbély, A. N., Le Joncour, V., Cordella, P., Perego, R., Modena, D., et al. (2019). Octreotide Conjugates for Tumor Targeting and Imaging. Pharmaceutics, 11(5), 220. doi:10.3390/pharmaceutics11050220
Figueras Agustí, E., Martins, A., Borbély, A. N., Le Joncour, V., Cordella, P., Perego, R., Modena, D., Pagani, P., Esposito, S., Auciello, G., et al. (2019). Octreotide Conjugates for Tumor Targeting and Imaging. Pharmaceutics 11:220.
Figueras Agustí, E., et al., 2019. Octreotide Conjugates for Tumor Targeting and Imaging. Pharmaceutics, 11(5): 220.
E. Figueras Agustí, et al., “Octreotide Conjugates for Tumor Targeting and Imaging.”, Pharmaceutics, vol. 11, 2019, : 220.
Figueras Agustí, E., Martins, A., Borbély, A.N., Le Joncour, V., Cordella, P., Perego, R., Modena, D., Pagani, P., Esposito, S., Auciello, G., Frese, M., Gallinari, P., Laakkonen, P., Steinkuhler, C., Sewald, N.: Octreotide Conjugates for Tumor Targeting and Imaging. Pharmaceutics. 11, : 220 (2019).
Figueras Agustí, Eduard, Martins, Ana, Borbély, Adina Noémi, Le Joncour, Vadim, Cordella, Paola, Perego, Raffaella, Modena, Daniela, Pagani, Paolo, Esposito, Simone, Auciello, Giulio, Frese, Marcel, Gallinari, Paola, Laakkonen, Pirjo, Steinkuhler, Christian, and Sewald, Norbert. “Octreotide Conjugates for Tumor Targeting and Imaging.”. Pharmaceutics 11.5 (2019): 220.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-05-21T11:09:10Z
MD5 Prüfsumme
cbb6dd59e665eb6fce85da719e8498c5

50 References

Daten bereitgestellt von Europe PubMed Central.

Classical chemotherapy: mechanisms, toxicities and the therapeutic window.
Malhotra V, Perry MC., Cancer Biol. Ther. 2(4 Suppl 1), 2003
PMID: 14508075
Acetazolamide Serves as Selective Delivery Vehicle for Dipeptide-Linked Drugs to Renal Cell Carcinoma.
Cazzamalli S, Dal Corso A, Neri D., Mol. Cancer Ther. 15(12), 2016
PMID: 27609641
Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors.
Ginj M, Zhang H, Waser B, Cescato R, Wild D, Wang X, Erchegyi J, Rivier J, Macke HR, Reubi JC., Proc. Natl. Acad. Sci. U.S.A. 103(44), 2006
PMID: 17056720
Somatostatin analogs and radiopeptides in cancer therapy.
Froidevaux S, Eberle AN., Biopolymers 66(3), 2002
PMID: 12385036
Novel octreotide dicarba-analogues with high affinity and different selectivity for somatostatin receptors.
Di Cianni A, Carotenuto A, Brancaccio D, Novellino E, Reubi JC, Beetschen K, Papini AM, Ginanneschi M., J. Med. Chem. 53(16), 2010
PMID: 20666484
Somatostatin subtype-2 receptor-targeted metal-based anticancer complexes.
Barragan F, Carrion-Salip D, Gomez-Pinto I, Gonzalez-Canto A, Sadler PJ, de Llorens R, Moreno V, Gonzalez C, Massaguer A, Marchan V., Bioconjug. Chem. 23(9), 2012
PMID: 22871231
DOTA-Derivatives of Octreotide Dicarba-Analogs with High Affinity for Somatostatin sst2,5 Receptors.
Pratesi A, Ginanneschi M, Lumini M, Papini AM, Novellino E, Brancaccio D, Carotenuto A., Front Chem 5(), 2017
PMID: 28286746
Octreotide-Mediated Tumor-Targeted Drug Delivery via a Cleavable Doxorubicin-Peptide Conjugate.
Lelle M, Kaloyanova S, Freidel C, Theodoropoulou M, Musheev M, Niehrs C, Stalla G, Peneva K., Mol. Pharm. 12(12), 2015
PMID: 26524088
Drug delivery and release systems for targeted tumor therapy.
Bohme D, Beck-Sickinger AG., J. Pept. Sci. 21(3), 2015
PMID: 25703117
Octreotide-periplocymarin conjugate prodrug for improving targetability and anti-tumor efficiency: synthesis, in vitro and in vivo evaluation.
Zhang HY, Xu WQ, Zheng YY, Omari-Siaw E, Zhu Y, Cao X, Tong SS, Yu JN, Xu XM., Oncotarget 7(52), 2016
PMID: 27861145
Tumor targeted delivery of octreotide-periplogenin conjugate: Synthesis, in vitro and in vivo evaluation.
Zhang HY, Xu WQ, Wang YW, Omari-Siaw E, Wang Y, Zheng YY, Cao X, Tong SS, Yu JN, Xu XM., Int J Pharm 502(1-2), 2016
PMID: 26899980
Imaging in neuroendocrine tumors: an update for the clinician.
Maxwell JE, Howe JR., Int J Endocr Oncol 2(2), 2015
PMID: 26257863
Somatostatin receptor PET ligands - the next generation for clinical practice.
Pauwels E, Cleeren F, Bormans G, Deroose CM., Am J Nucl Med Mol Imaging 8(5), 2018
PMID: 30510849
Cryptophycins: cytotoxic cyclodepsipeptides with potential for tumor targeting.
Weiss C, Figueras E, Borbely AN, Sewald N., J. Pept. Sci. 23(7-8), 2017
PMID: 28661555
Cryptophycin: a new antimicrotubule agent active against drug-resistant cells.
Smith CD, Zhang X, Mooberry SL, Patterson GM, Moore RE., Cancer Res. 54(14), 1994
PMID: 7913408
Phase 2 study of cryptophycin 52 (LY355703) in patients previously treated with platinum based chemotherapy for advanced non-small cell lung cancer.
Edelman MJ, Gandara DR, Hausner P, Israel V, Thornton D, DeSanto J, Doyle LA., Lung Cancer 39(2), 2003
PMID: 12581573
A multicenter phase II study of the cryptophycin analog LY355703 in patients with platinum-resistant ovarian cancer.
D'Agostino G, del Campo J, Mellado B, Izquierdo MA, Minarik T, Cirri L, Marini L, Perez-Gracia JL, Scambia G., Int. J. Gynecol. Cancer 16(1), 2006
PMID: 16445613
Efficient synthesis of cryptophycin-52 and novel para-alkoxymethyl unit A analogues.
Eissler S, Bogner T, Nahrwold M, Sewald N., Chemistry 15(42), 2009
PMID: 19760734
Synthesis and cytotoxicity studies of new cryptophycin analogues.
Liu WL, Zhang JC, Jiang FQ, Fu L., Arch. Pharm. (Weinheim) 342(10), 2009
PMID: 19714674
"Clicktophycin-52": a bioactive cryptophycin-52 triazole analogue.
Nahrwold M, Bogner T, Eissler S, Verma S, Sewald N., Org. Lett. 12(5), 2010
PMID: 20131817
Total synthesis and biological evaluation of fluorinated cryptophycins.
Weiß C, Bogner T, Sammet B, Sewald N., Beilstein J Org Chem 8(), 2012
PMID: 23209540
Design and synthesis of a new class of cryptophycins based tubulin inhibitors.
Kumar A, Kumar M, Sharma S, Guru SK, Bhushan S, Shah BA., Eur J Med Chem 93(), 2015
PMID: 25647428
Biological evaluation of cryptophycin 52 fragment A analogues: effect of the multidrug resistance ATP binding cassette transporters on antitumor activity.
Al-Awar RS, Corbett TH, Ray JE, Polin L, Kennedy JH, Wagner MM, Williams DC., Mol. Cancer Ther. 3(9), 2004
PMID: 15367700
Synthesis of 15,20-triamide analogue with polar substituent on the phenyl ring of arenastatin A, an extremely potent cytotoxic spongean depsipeptide.
Kotoku N, Kato T, Narumi F, Ohtani E, Kamada S, Aoki S, Okada N, Nakagawa S, Kobayashi M., Bioorg. Med. Chem. 14(22), 2006
PMID: 16877000
Approaches for the synthesis of functionalized cryptophycins.
Sammet B, Bogner T, Nahrwold M, Weiss C, Sewald N., J. Org. Chem. 75(20), 2010
PMID: 20857920
Conjugates of modified cryptophycins and RGD-peptides enter target cells by endocytosis.
Nahrwold M, Weiß C, Bogner T, Mertink F, Conradi J, Sammet B, Palmisano R, Royo Gracia S, Preuße T, Sewald N., J. Med. Chem. 56(5), 2013
PMID: 23387527
Recent approaches for the synthesis of modified cryptophycins.
Weiss C, Sammet B, Sewald N., Nat Prod Rep 30(7), 2013
PMID: 23732943
Novel unit B cryptophycin analogues as payloads for targeted therapy.
Figueras E, Borbely A, Ismail M, Frese M, Sewald N., Beilstein J Org Chem 14(), 2018
PMID: 29977395
Small targeted cytotoxics: current state and promises from DNA-encoded chemical libraries.
Krall N, Scheuermann J, Neri D., Angew. Chem. Int. Ed. Engl. 52(5), 2013
PMID: 23296451
Cryptophycins-309, 249 and other cryptophycin analogs: preclinical efficacy studies with mouse and human tumors.
Liang J, Moore RE, Moher ED, Munroe JE, Al-awar RS, Hay DA, Varie DL, Zhang TY, Aikins JA, Martinelli MJ, Shih C, Ray JE, Gibson LL, Vasudevan V, Polin L, White K, Kushner J, Simpson C, Pugh S, Corbett TH., Invest New Drugs 23(3), 2005
PMID: 15868377
The cryptophycins as potent payloads for antibody drug conjugates.
Verma VA, Pillow TH, DePalatis L, Li G, Phillips GL, Polson AG, Raab HE, Spencer S, Zheng B., Bioorg. Med. Chem. Lett. 25(4), 2015
PMID: 25613677
Tubulin Inhibitor-Based Antibody-Drug Conjugates for Cancer Therapy.
Chen H, Lin Z, Arnst KE, Miller DD, Li W., Molecules 22(8), 2017
PMID: 28763044
Modulating Antibody-Drug Conjugate Payload Metabolism by Conjugation Site and Linker Modification.
Su D, Kozak KR, Sadowsky J, Yu SF, Fourie-O'Donohue A, Nelson C, Vandlen R, Ohri R, Liu L, Ng C, He J, Davis H, Lau J, Del Rosario G, Cosino E, Cruz-Chuh JD, Ma Y, Zhang D, Darwish M, Cai W, Chen C, Zhou H, Lu J, Liu Y, Kaur S, Xu K, Pillow TH., Bioconjug. Chem. 29(4), 2018
PMID: 29481745
In Vivo Antitumor Activity of a Novel Acetazolamide-Cryptophycin Conjugate for the Treatment of Renal Cell Carcinomas.
Cazzamalli S, Figueras E, Petho L, Borbely A, Steinkuhler C, Neri D, Sewald N., ACS Omega 3(11), 2018
PMID: 30533574
Synthesis and Biological Evaluation of RGD⁻Cryptophycin Conjugates for Targeted Drug Delivery.
Borbely A, Figueras E, Martins A, Esposito S, Auciello G, Monteagudo E, Di Marco A, Summa V, Cordella P, Perego R, Kemker I, Frese M, Gallinari P, Steinkuhler C, Sewald N., Pharmaceutics 11(4), 2019
PMID: 30939768
Selective alkylation and acylation of alpha and epsilon amino groups with PEG in a somatostatin analogue: tailored chemistry for optimized bioconjugates.
Morpurgo M, Monfardini C, Hofland LJ, Sergi M, Orsolini P, Dumont JM, Veronese FM., Bioconjug. Chem. 13(6), 2002
PMID: 12440858
Ligand-Targeted Drug Delivery.
Srinivasarao M, Low PS., Chem. Rev. 117(19), 2017
PMID: 28898067
An efficient liquid chromatography-high resolution mass spectrometry approach for the optimization of the metabolic stability of therapeutic peptides.
Esposito S, Mele R, Ingenito R, Bianchi E, Bonelli F, Monteagudo E, Orsatti L., Anal Bioanal Chem 409(10), 2017
PMID: 28138743
Diketopiperazine formation and N-terminal degradation in recombinant human growth hormone.
Battersby JE, Hancock WS, Canova-Davis E, Oeswein J, O'Connor B., Int. J. Pept. Protein Res. 44(3), 1994
PMID: 7822097
Receptor signaling and endocytosis are differentially regulated by somatostatin analogs.
Liu Q, Cescato R, Dewi DA, Rivier J, Reubi JC, Schonbrunn A., Mol. Pharmacol. 68(1), 2005
PMID: 15855408
Internalization of sst2, sst3, and sst5 receptors: effects of somatostatin agonists and antagonists.
Cescato R, Schulz S, Waser B, Eltschinger V, Rivier JE, Wester HJ, Culler M, Ginj M, Liu Q, Schonbrunn A, Reubi JC., J. Nucl. Med. 47(3), 2006
PMID: 16513620
Somatostatin Receptor Antagonists for Imaging and Therapy.
Fani M, Nicolas GP, Wild D., J. Nucl. Med. 58(Suppl 2), 2017
PMID: 28864614
Cancer-targeted delivery systems based on peptides.
Chatzisideri T, Leonidis G, Sarli V., Future Med Chem 10(18), 2018
PMID: 30043641
Latent Warheads for Targeted Cancer Therapy: Design and Synthesis of pro-Pyrrolobenzodiazepines and Conjugates.
Vlahov IR, Qi L, Kleindl PJ, Santhapuram HK, Felten A, Parham GL, Wang K, You F, Vaughn JF, Hahn SJ, Klein HF, Vetzel M, Reddy JA, Nelson M, Nicoson J, Leamon CP., Bioconjug. Chem. 28(12), 2017
PMID: 29211454
Development of a Small Molecule Tubulysin B Conjugate for Treatment of Carbonic Anhydrase IX Receptor Expressing Cancers.
Marks IS, Gardeen SS, Kurdziel SJ, Nicolaou ST, Woods JE, Kularatne SA, Low PS., Mol. Pharm. 15(6), 2018
PMID: 29715036

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 31067748
PubMed | Europe PMC

Suchen in

Google Scholar