Transcriptome assembly for a colour-polymorphic grasshopper (Gomphocerus sibiricus) with a very large genome size

Shah A, Hoffman J, Schielzeth H (2019)
BMC genomics 20(1): 370.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA 1.13 MB
Autor*in
Abstract / Bemerkung
BACKGROUND: The club-legged grasshopper Gomphocerus sibiricus is a Gomphocerinae grasshopper with a promising future as model species for studying the maintenance of colour-polymorphism, the genetics of sexual ornamentation and genome size evolution. However, limited molecular resources are available for this species. Here, we present a de novo transcriptome assembly as reference resource for gene expression studies. We used high-throughput Illumina sequencing to generate 5,070,036 paired-end reads after quality filtering. We then combined the best-assembled contigs from three different de novo transcriptome assemblers (Trinity, SOAPdenovo-trans and Oases/Velvet) into a single assembly.; RESULTS: This resulted in 82,251 contigs with a N50 of 1357 and a TransRate assembly score of 0.325, which compares favourably with other orthopteran transcriptome assemblies. Around 87% of the transcripts could be annotated using InterProScan 5, BLASTx and the dammit! annotation pipeline. We identified a number of genes involved in pigmentation and green pigment metabolism pathways. Furthermore, we identified 76,221 putative single nucleotide polymorphisms residing in 8400 contigs. We also assembled the mitochondrial genome and investigated levels of sequence divergence with other species from the genus Gomphocerus. Finally, we detected and assembled Wolbachia sequences, which revealed close sequence similarity to the strain pel wPip.; CONCLUSIONS: Our study has generated a significant resource for uncovering genotype-phenotype associations in a species with an extraordinarily large genome, while also providing mitochondrial and Wolbachia sequences that will be useful for comparative studies.
Stichworte
Insects; Orthoptera; Acrididae; Gomphocerinae; Transcriptome; Mitochondria; Wolbachia
Erscheinungsjahr
2019
Zeitschriftentitel
BMC genomics
Band
20
Ausgabe
1
Art.-Nr.
370
ISSN
1471-2164
eISSN
1471-2164
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2935645

Zitieren

Shah A, Hoffman J, Schielzeth H. Transcriptome assembly for a colour-polymorphic grasshopper (Gomphocerus sibiricus) with a very large genome size. BMC genomics. 2019;20(1): 370.
Shah, A., Hoffman, J., & Schielzeth, H. (2019). Transcriptome assembly for a colour-polymorphic grasshopper (Gomphocerus sibiricus) with a very large genome size. BMC genomics, 20(1), 370. doi:10.1186/s12864-019-5756-4
Shah, Abhijeet, Hoffman, Joseph, and Schielzeth, Holger. 2019. “Transcriptome assembly for a colour-polymorphic grasshopper (Gomphocerus sibiricus) with a very large genome size”. BMC genomics 20 (1): 370.
Shah, A., Hoffman, J., and Schielzeth, H. (2019). Transcriptome assembly for a colour-polymorphic grasshopper (Gomphocerus sibiricus) with a very large genome size. BMC genomics 20:370.
Shah, A., Hoffman, J., & Schielzeth, H., 2019. Transcriptome assembly for a colour-polymorphic grasshopper (Gomphocerus sibiricus) with a very large genome size. BMC genomics, 20(1): 370.
A. Shah, J. Hoffman, and H. Schielzeth, “Transcriptome assembly for a colour-polymorphic grasshopper (Gomphocerus sibiricus) with a very large genome size”, BMC genomics, vol. 20, 2019, : 370.
Shah, A., Hoffman, J., Schielzeth, H.: Transcriptome assembly for a colour-polymorphic grasshopper (Gomphocerus sibiricus) with a very large genome size. BMC genomics. 20, : 370 (2019).
Shah, Abhijeet, Hoffman, Joseph, and Schielzeth, Holger. “Transcriptome assembly for a colour-polymorphic grasshopper (Gomphocerus sibiricus) with a very large genome size”. BMC genomics 20.1 (2019): 370.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Creative Commons Namensnennung 4.0 International Public License (CC-BY 4.0):
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-05-21T09:59:00Z
MD5 Prüfsumme
48a4adc76f4b713194ffa8dbbb7ec4b5


Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

52 References

Daten bereitgestellt von Europe PubMed Central.

Identifying the genes underlying quantitative traits: a rationale for the QTN programme.
Lee YW, Gould BA, Stinchcombe JR., AoB Plants 6(0), 2014
PMID: 24790125
Assembly of large genomes using second-generation sequencing.
Schatz MC, Delcher AL, Salzberg SL., Genome Res. 20(9), 2010
PMID: 20508146
The axolotl genome and the evolution of key tissue formation regulators.
Nowoshilow S, Schloissnig S, Fei JF, Dahl A, Pang AWC, Pippel M, Winkler S, Hastie AR, Young G, Roscito JG, Falcon F, Knapp D, Powell S, Cruz A, Cao H, Habermann B, Hiller M, Tanaka EM, Myers EW., Nature 554(7690), 2018
PMID: 29364872
Next-generation transcriptome assembly.
Martin JA, Wang Z., Nat. Rev. Genet. 12(10), 2011
PMID: 21897427

Parmigiani G, Garrett ES, Irizarry RA., 2003
RNA-Seq: a revolutionary tool for transcriptomics.
Wang Z, Gerstein M, Snyder M., Nat. Rev. Genet. 10(1), 2009
PMID: 19015660
A high quality Arabidopsis transcriptome for accurate transcript-level analysis of alternative splicing.
Zhang R, Calixto CPG, Marquez Y, Venhuizen P, Tzioutziou NA, Guo W, Spensley M, Entizne JC, Lewandowska D, Ten Have S, Frei Dit Frey N, Hirt H, James AB, Nimmo HG, Barta A, Kalyna M, Brown JWS., Nucleic Acids Res. 45(9), 2017
PMID: 28402429

Gregory TR., 2018

AUTHOR UNKNOWN, 0
Transcriptome analysis of the desert locust central nervous system: production and annotation of a Schistocerca gregaria EST database.
Badisco L, Huybrechts J, Simonet G, Verlinden H, Marchal E, Huybrechts R, Schoofs L, De Loof A, Vanden Broeck J., PLoS ONE 6(3), 2011
PMID: 21445293
The locust genome provides insight into swarm formation and long-distance flight.
Wang X, Fang X, Yang P, Jiang X, Jiang F, Zhao D, Li B, Cui F, Wei J, Ma C, Wang Y, He J, Luo Y, Wang Z, Guo X, Guo W, Wang X, Zhang Y, Yang M, Hao S, Chen B, Ma Z, Yu D, Xiong Z, Zhu Y, Fan D, Han L, Wang B, Chen Y, Wang J, Yang L, Zhao W, Feng Y, Chen G, Lian J, Li Q, Huang Z, Yao X, Lv N, Zhang G, Li Y, Wang J, Wang J, Zhu B, Kang L., Nat Commun 5(), 2014
PMID: 24423660
Phylogenomics resolves the timing and pattern of insect evolution.
Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, Frandsen PB, Ware J, Flouri T, Beutel RG, Niehuis O, Petersen M, Izquierdo-Carrasco F, Wappler T, Rust J, Aberer AJ, Aspock U, Aspock H, Bartel D, Blanke A, Berger S, Bohm A, Buckley TR, Calcott B, Chen J, Friedrich F, Fukui M, Fujita M, Greve C, Grobe P, Gu S, Huang Y, Jermiin LS, Kawahara AY, Krogmann L, Kubiak M, Lanfear R, Letsch H, Li Y, Li Z, Li J, Lu H, Machida R, Mashimo Y, Kapli P, McKenna DD, Meng G, Nakagaki Y, Navarrete-Heredia JL, Ott M, Ou Y, Pass G, Podsiadlowski L, Pohl H, von Reumont BM, Schutte K, Sekiya K, Shimizu S, Slipinski A, Stamatakis A, Song W, Su X, Szucsich NU, Tan M, Tan X, Tang M, Tang J, Timelthaler G, Tomizuka S, Trautwein M, Tong X, Uchifune T, Walzl MG, Wiegmann BM, Wilbrandt J, Wipfler B, Wong TK, Wu Q, Wu G, Xie Y, Yang S, Yang Q, Yeates DK, Yoshizawa K, Zhang Q, Zhang R, Zhang W, Zhang Y, Zhao J, Zhou C, Zhou L, Ziesmann T, Zou S, Li Y, Xu X, Zhang Y, Yang H, Wang J, Wang J, Kjer KM, Zhou X., Science 346(6210), 2014
PMID: 25378627
Transcriptome profiling of ontogeny in the acridid grasshopper Chorthippus biguttulus.
Berdan EL, Finck J, Johnston PR, Waurick I, Mazzoni CJ, Mayer F., PLoS ONE 12(5), 2017
PMID: 28520760

AUTHOR UNKNOWN, 0

Bellmann H, Luquet CH., 2009

AUTHOR UNKNOWN, 0
Pigments and color changes
Fuzeau-Braesch S., 1972
Genome evolution of Wolbachia strain wPip from the Culex pipiens group.
Klasson L, Walker T, Sebaihia M, Sanders MJ, Quail MA, Lord A, Sanders S, Earl J, O'Neill SL, Thomson N, Sinkins SP, Parkhill J., Mol. Biol. Evol. 25(9), 2008
PMID: 18550617
Variability of the DNA content in five Orthopteran species
Gosalvez J, López-Fernandez C, Esponda P., 1980

AUTHOR UNKNOWN, 0
Wolbachia: master manipulators of invertebrate biology.
Werren JH, Baldo L, Clark ME., Nat. Rev. Microbiol. 6(10), 2008
PMID: 18794912
How many species are infected with Wolbachia?--A statistical analysis of current data.
Hilgenboecker K, Hammerstein P, Schlattmann P, Telschow A, Werren JH., FEMS Microbiol. Lett. 281(2), 2008
PMID: 18312577
Wolbachia effects in natural populations of Chorthippus parallelus from the Pyrenean hybrid zone.
Zabal-Aguirre M, Arroyo F, Garcia-Hurtado J, de la Torre J, Hewitt GM, Bella JL., J. Evol. Biol. 27(6), 2014
PMID: 24819964
First evidence of Wolbachia infection in populations of grasshopper Podisma sapporensis (Orthoptera: Acrididae)
Bugrov AG, Ilinsky YY, Strunov A, Zhukova M, Kiseleva E, Si A, Tatsuta H., 2016
Heme oxygenase-2. Properties of the heme complex of the purified tryptic fragment of recombinant human heme oxygenase-2.
Ishikawa K, Takeuchi N, Takahashi S, Matera KM, Sato M, Shibahara S, Rousseau DL, Ikeda-Saito M, Yoshida T., J. Biol. Chem. 270(11), 1995
PMID: 7890772
TransRate: reference-free quality assessment of de novo transcriptome assemblies.
Smith-Unna R, Boursnell C, Patro R, Hibberd JM, Kelly S., Genome Res. 26(8), 2016
PMID: 27252236
Synthetic spike-in standards for RNA-seq experiments.
Jiang L, Schlesinger F, Davis CA, Zhang Y, Li R, Salit M, Gingeras TR, Oliver B., Genome Res. 21(9), 2011
PMID: 21816910
Trimmomatic: a flexible trimmer for Illumina sequence data.
Bolger AM, Lohse M, Usadel B., Bioinformatics 30(15), 2014
PMID: 24695404
The khmer software package: enabling efficient nucleotide sequence analysis
Crusoe MR, Alameldin HF, Awad S, Boucher E, Caldwell A, Cartwright R, Charbonneau A, Constantinides B, Edvenson G, Fay S, Fenton J, Fenzl T, Fish J, Garcia-Gutierrez L, Garland P, Gluck J, González I, Guermond S, Guo J, Gupta A, Herr JR, Howe A, Hyer A, Härpfer A, Irber L, Kidd R, Lin D, Lippi J, Mansour T, McA'Nulty P, McDonald E, Mizzi J, Murray KD, Nahum JR, Nanlohy K, Nederbragt AJ, Ortiz-Zuazaga H, Ory J, Pell J, Pepe-Ranney C, Russ ZN, Schwarz E, Scott C, Seaman J, Sievert S, Simpson J, Skennerton CT, Spencer J, Srinivasan R, Standage D, Stapleton JA, Steinman SR, Stein J, Taylor B, Trimble W, Wiencko HL, Wright M, Wyss B, Zhang Q, zyme e, Brown CT., 2015
PMID: PPR43346
SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads.
Xie Y, Wu G, Tang J, Luo R, Patterson J, Liu S, Huang W, He G, Gu S, Li S, Zhou X, Lam TW, Li Y, Xu X, Wong GK, Wang J., Bioinformatics 30(12), 2014
PMID: 24532719
De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis.
Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD, Ott M, Orvis J, Pochet N, Strozzi F, Weeks N, Westerman R, William T, Dewey CN, Henschel R, LeDuc RD, Friedman N, Regev A., Nat Protoc 8(8), 2013
PMID: 23845962
Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels.
Schulz MH, Zerbino DR, Vingron M, Birney E., Bioinformatics 28(8), 2012
PMID: 22368243

AUTHOR UNKNOWN, 0
BBMap short read aligner
Bushnell B., 2016
The Sequence Alignment/Map format and SAMtools.
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R; 1000 Genome Project Data Processing Subgroup., Bioinformatics 25(16), 2009
PMID: 19505943
A population genomic scan in Chorthippus grasshoppers unveils previously unknown phenotypic divergence.
Berdan EL, Mazzoni CJ, Waurick I, Roehr JT, Mayer F., Mol. Ecol. 24(15), 2015
PMID: 26081018
BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs.
Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM., Bioinformatics 31(19), 2015
PMID: 26059717
InterProScan 5: genome-scale protein function classification.
Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong SY, Lopez R, Hunter S., Bioinformatics 30(9), 2014
PMID: 24451626
Fast and accurate short read alignment with Burrows-Wheeler transform.
Li H, Durbin R., Bioinformatics 25(14), 2009
PMID: 19451168
VarScan: variant detection in massively parallel sequencing of individual and pooled samples.
Koboldt DC, Chen K, Wylie T, Larson DE, McLellan MD, Mardis ER, Weinstock GM, Wilson RK, Ding L., Bioinformatics 25(17), 2009
PMID: 19542151
Visualizing genomic data using Gviz and bioconductor
Hahne F, Ivanek R., 2016
Orchestrating high-throughput genomic analysis with Bioconductor.
Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, Bravo HC, Davis S, Gatto L, Girke T, Gottardo R, Hahne F, Hansen KD, Irizarry RA, Lawrence M, Love MI, MacDonald J, Obenchain V, Oles AK, Pages H, Reyes A, Shannon P, Smyth GK, Tenenbaum D, Waldron L, Morgan M., Nat. Methods 12(2), 2015
PMID: 25633503
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 31088494
PubMed | Europe PMC

Suchen in

Google Scholar